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A poet once said, “The whole universe is in a glass of wine.” We will probably

never know in what sense he meant that, for poets do not write to be understood.

But it is true that if we look at a glass of wine closely enough we see the entire

universe. There are the things of physics: the twisting liquid which evaporates de-

pending on the wind and weather, the reflections in the glass, and our imagination

adds the atoms. The glass is a distillation of the Earth’s rocks, and in its compo-

sition we see the secrets of the universe’s age, and the evolution of stars. What

strange arrays of chemicals are in the wine? How did they come to be? There

are the ferments, the enzymes, the substrates, and the products. There in wine is

found the great generalization: all life is fermentation. Nobody can discover the

chemistry of wine without discovering, as did Louis Pasteur, the cause of much

disease. How vivid is the claret, pressing its existence into the consciousness that

watches it! If our small minds, for some convenience, divide this glass of wine,

this universe, into parts — physics, biology, geology, astronomy, psychology, and

so on — remember that Nature does not know it! So let us put it all back together,

not forgetting ultimately what it is for. Let it give us one more final pleasure: drink

it and forget it all!

Richard Feynman
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In this thesis, we study the phase space for the Einstein-Yang-Mills equations

on an asymptotically flat manifold. The phase space is defined as a Hilbert man-

ifold, which is modeled on weighted Sobolev spaces. We use an implicit function

theorem argument to prove that the space of solutions to the constraint equations

is a Hilbert submanifold of the phase space; this is equivalent to the statement

that the Einstein-Yang-Mills constraints on an asymptotically flat manifold are

linearisation stable.

It is then shown that the energy, momentum, charge and angular momentum

are smooth maps acting on the constraint submanifold. This framework allows

us to prove that the first law of black hole mechanics provides a condition for

initial data to be stationary, in two distinct cases: when the Cauchy surface has

an interior boundary, and when it does not. Both cases are established using a

Lagrange multipliers argument.
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Conventions

We use the signature convention, (−,+,+,+), whenever we discuss Lorentzian

metrics.

We use the following conventions for indices on tensors considered over dif-

ferent bundles:

3-dimensional manifold Latin lower case, mid-alphabet i, j, ...

4-dimensional manifold Greek lower case, mid-alphabet µ, ν...

n-dimensional Lie algebra Latin lower case, early alphabet a, b...

(4 + n)-dimensional principal bundle Greek lower case, early alphabet α, β...

By an abuse of notation, we will write ξα = (ξ0, ξi, ξa) = (ξµ, ξa) to indicate

an object that is to be identified with a tensor over the (4 + n)-dimensional bun-

dle, and use the index to distinguish between components. For example, we will

consider ξ0 as a scalar function ξi as a vector field over the related 3-manifold.

The second fundamental form of a spacelike hypersurface is Kij = ∇inj,

where nj is the future pointing unit normal. This sign convention differs to that

used in numerical relativity, but appears to be more prevalent in the geometric

analysis community.
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Chapter 1

Introduction
There is no certainty in sciences where one of the

mathematical sciences cannot be applied, or which are

not in relation with these mathematics.

Leonardo da Vinci

One of the most remarkable discoveries in the history of general relativity

is the duality between the laws of thermodynamics and the laws of black hole

mechanics [8, 14, 15, 39]. It is nearly impossible to discuss many interesting ideas

in modern physics without at least a mention of the laws of black hole mechanics:

Hawking radiation, the information paradox and the recent ideas surrounding

black hole firewalls, to name a few. Through this duality, we are able to discuss

the thermodynamic properties, such as entropy and temperature, of a black hole.

In 1992, Sudarsky and Wald [57] discussed the first law of black hole me-

chanics in the context of Einstein-Yang-Mills theory. Among other things, they

noted that certain surface integrals, associated with the Hamiltonian, were closely

related to the first law. It was argued that the differential relationship pertaining

to the first law should provide a condition for stationarity of the Einstein-Yang-

Mills equations. Their argument is based on earlier work by Brill, Deser and

Fadeev [17], who proposed a condition for stationarity in the pure Einstein case.

1



Chapter 1. Introduction 2

Brill, Deser and Fadeev argued that stationary solutions were exactly those solu-

tions that extremise the ADM mass on the space of solutions. Both arguments

were based on the method of Lagrange multipliers, however neither provided the

mathematical machinery required to make such an argument rigorous. The essen-

tial missing ingredient, to develop this argument into a mathematical proof, is a

manifold structure for the space of solutions.

In 2005, Bartnik provided such a Hilbert manifold structure for the space of

solutions to the Einstein constraints, and from this a complete proof of the Brill,

Deser and Fadeev argument was given [11]. At first this appears to contradict the

argument of Sudarsky and Wald, since we have that a solution is stationary if and

only if the condition dm = 0 is satisfied. However, the case considered by Bartnik

has no Maxwell or Yang-Mills fields, and the initial data manifold has a single

asymptotic end with no interior boundary, so the first law reduces to dm = 0.

This thesis provides a Hilbert manifold structure for the space of solutions

to the Einstein-Yang-Mills constraints, and establishes an analogous condition for

stationarity in this case. We then examine the case where the initial data manifold

has a closed 2-surface interior boundary, and demonstrate that the usual expression

of the first law gives a condition for stationarity. The Hilbert manifold structure

provided for the space of solutions is equivalent to the condition of linearisation

stability, which was studied in detail in the 1970s for the case where the manifold

was compact without boundary [1, 2, 32]. That is, the results here establish

linearisation stability for the Einstein-Yang-Mills constraints on an asymptotically

flat manifold.

The outline of this thesis is as follows. Chapter 2 gives background and

context to this work; we introduce the initial data formulation of general relativity

and the Einstein-Yang-Mills equations, then briefly discuss the laws of black hole

mechanics and the property of linearisation stability. Chapter 3 provides a short

summary of known results pertaining to the weighted Sobolev spaces that the
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phase space Hilbert manifold is modeled on. The weighted inequalities contained

therein are the basis of many of the estimates to follow. The crux of the thesis

begins with Chapter 4, where we construct the phase space and prove that the

space of solutions to the constraints is a Hilbert submanifold of this phase space.

The relevant definitions of mass, charge and angular momentum are collected in

Chapter 5 and we prove they are smooth functions on the constraint submanifold.

In Chapter 6, we finally get to the first law of black hole mechanics where two

cases are discussed separately: when horizon terms are present, and when they are

not. In both cases, a new Hamiltonian is introduced à la Regge and Teitelboim

[50], which behaves as a Lagrange function. Then a Lagrange multipliers argument

demonstrates that the first law gives a condition for stationarity.





Chapter 2

Background
But what is your final goal, you may ask. That goal

will become clearer, will emerge slowly but surely, much

as the rough draft turns into a sketch, and the sketch

into a painting through the serious work done on it,

through the elaboration of the original vague idea and

through the consolidation of the first fleeting and passing

thought.

Vincent van Gogh

2.1 The Einstein Constraint Equations

The Einstein field equations (2.1) are a system of ten partial differential equations

(PDEs), relating matter to the curvature of spacetime, and are the core of general

relativity. The source matter is described by a symmetric two-tensor, Tµν , known

as the stress-energy tensor, and one solves the field equations,

4Rµν −
1

2
4R4gµν = 8πTµν , (2.1)

for a Lorentzian metric, 4gµν , on a differentiable 4-manifold, 4V . In the above, 4Rµν

is the Ricci curvature and 4R is the scalar curvature of 4g.

5



Chapter 2. Background 6

Similar to other physical theories, the Einstein equations can be recast as

an initial data problem in the form of a Hamiltonian system. This is particularly

useful when one is concerned with the space of solutions, or finding particular

solutions, as it reduces the number of equations from ten down to four constraints.

This also allows one to work with Riemannian geometry, rather than Lorentzian

geometry. The idea of a Hamiltonian formulation of general relativity gained

significant popularity when Dirac [29, 30] lay groundwork in the pursuit of a

quantum theory of gravity. While half a century later we are still without a

quantum theory of gravity, the Hamiltonian formulation has found many uses in

the study of classical general relativity. The Hamiltonian framework generally

used now is due to Arnowitt, Deser and Misner [3, 4, 6], and is closely related

to the mass definition given by the same authors [5]. This formalism and mass

definition is known as the ADM formalism and ADM mass respectively. The ideas

behind the ADM formalism are outlined below (see also [6, 38]).

In order to recast the field equations (2.1) as an initial data problem, we must

first interpret “time evolution” in the context on general relativity; that is, we

must split spacetime into “space” and “time”. Let (4V, 4g) be a globally hyperbolic

spacetime, so that it can be foliated by spacelike hypersurfaces, 4V =
⋃
τ Mτ ,

where each Mτ = t−1(τ) is the τ level surface of some time function, t. The time

evolution vector is then a future-pointing timelike vector tµ, such that tµdtµ = 1,

and time derivatives are interpreted as Lie derivatives with respect to tµ.

Given a spacelike hypersurface, Mτ0 , initial data for the Einstein equations

is the induced 3-metric, g, and second fundamental form, K, on Mτ0 . We also

make use of the decomposition tµ = Nnµ + Xµ, where n is the future-pointing

unit normal to Mτ0 and X is tangential to Mτ0 . This allows us to view tµ as data

on Mτ0 . The quantities N and X are called the lapse function and shift vector

respectively and we often call tµ the lapse-shift 4-vector.

If 4g is to satisfy the field equations (2.1) then obviously g and K cannot
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be arbitrary, and in fact must also satisfy some geometric constraints. The Gauss

and Codazzi equations can be used to write the curvature of g in terms of the

curvature of 4g and K. From this it can be shown that a solution to the field

equations must impose the following constraints.

R(g)−KijKij + (Ki
i)

2 = 16πT00, (2.2)

∇jKij −∇i(K
j
j ) = 8πT0i, (2.3)

where R(g) is the scalar curvature of the induced metric and the zero index refers

to a projection of the stress-energy tensor normal to the initial data surface. The

remaining Einstein equations give the evolution equations,

∂

∂t
gij =LXgij − 2NKij, (2.4)

∂

∂t
Kij =LXKij −∇i∇jN +N

(
Rij +Kk

kKij

− 2KikK
k
j + 4π[T µµ gij − 2Tij]

)
, (2.5)

where T is again the source stress-energy tensor and we use L to denote the Lie

derivative. Note that the lapse and shift are not constrained by these equations;

they simply correspond to a coordinate choice, and are freely specifiable.

Now consider the constraint equations (2.2), (2.3) on an arbitrary 3-manifold,

M, where g is a Riemannian metric and K is simply some symmetric covariant

2-tensor. One naturally may ask if it is then possible to find a unique solution

to the Einstein equations, in which (M, g) embeds isometrically with K as the

second fundamental form. Remarkably, for suitably regular (g,K), this has been

answered in the affirmative. In 1952, Choquet-Bruhat (then Foures-Bruhat) [35]

established the existence result, and uniqueness was settled in her joint work with

Geroch [23] in 1969. For this reason, one may consider solutions to the constraints

rather than solving the full Einstein equations when looking for solutions. The

weakest regularity assumptions on the initial data to ensure the Cauchy problem is
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well-posed, is due to recent work of Klainerman, Rodnianski and Szeftel [44]. This

requirement for well-posedness is R(g),∇(K) ∈ L2
loc, which may be guaranteed by

imposing the condition (g,K) ∈ W 2,2
loc ×W

1,2
loc .

If one were to interpret the 3-metric as the position variable in the Hamilto-

nian formulation, then the associated momentum variable is given by

πij := (Kij −Kk
kg

ij)
√
g. (2.6)

The phase space for the Einstein equations is given by pairs (g, π), with suitable

regularity and asymptotics prescribed. Hamiltonians will be discussed in greater

detail in Chapter 6.

2.2 The Einstein-Yang-Mills Equations

The matter, serving as the source for the field equations, is also governed by a

system of equations. Since these equations are defined on a curved spacetime, the

matter fields themselves are affected by the geometry of the spacetime; in this

case, we say the systems of equations are coupled. For example, both Maxwell’s

equations, and the stress energy tensor for electromagnetism in curved spacetime,

depend on the metric. This corresponds to photons being affected by the curvature,

while the energy of the electromagnetic field causes curvature itself. Here we are

interested in the case where the matter source comes from Yang-Mills fields, a

generalisation of the electromagnetic field.

Electromagnetism is a gauge theory with a U(1) symmetry, where Yang-

Mills theory is a gauge theory with any compact Lie group as the gauge group.

Introduced in 1954 by Chen Ning Yang and Robert Mills [60], Yang-Mills theory

is of particular interest to physicists as the standard model of particle physics is a

quantum Yang-Mills theory, with U(1)× SU(2)× SU(3) gauge symmetry. There
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has been a significant interest in coupling Yang-Mills fields to gravity since the

discovery of the Bartnik-McKinnon particle-like solutions [12, 55] and coloured

black holes [16, 54], as there are no analogous solutions for the Einstein-Maxwell

system.

Let G be some compact Lie group with Lie algebra, g; this will be the

gauge group for the Yang-Mills fields. The geometric structure describing Yang-

Mills fields is a principal G-bundle, P , over the spacetime, 4V , equipped with a

connection one-form, ω. We can pullback ω, via a local section ι : U → P , to

obtain a g-valued one-form on U ⊂ 4M,

4A := ι∗(ω). (2.7)

This quantity is called the gauge potential and describes the Yang-Mills field in

the gauge specified by the choice of ι. Another important quantity in Yang-Mills

theory is the curvature of the connection, given by

Ω := dω + ω ∧ ω, (2.8)

which is pulled back via ι to the field strength tensor,

F := ι∗(Ω), (2.9)

a g-valued two-form on U . In local coordinates on 4M, we write

F a
µν = ∇µA

a
ν −∇νA

a
µ + Ca

bcA
b
µA

c
ν , (2.10)

where ∇ is the Levi-Civita connection of g, and Ca
bc are the structure constants

of g, which are defined by the Lie bracket: [θ, χ]a = Ca
bcθ

bχc for all θ, χ ∈ g.

Note that ∇ can be replaced with any torsion-free connection in (2.10), as Fµν
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is an antisymmetric tensor. Since G is compact, g is the direct sum of semi-

simple and Abelian Lie algebras. It follows that the negative of the Killing form

provides an adjoint-invariant positive definite inner product on the semi-simple

factor, while the usual Euclidean inner product suffices on the Abelian factor.

This inner product, which we denote by γ, is used to identify g with g∗, the Lie

coalgebra.

In coordinates, the source-free Yang-Mills equations are given by

gρµ(∇ρF
a
µν + Ca

bcA
b
ρF

c
µν) = 0. (2.11)

The Yang-Mills equations are often considered on a fixed background, in which

case g in (2.11) is fixed. However, by inserting the Yang-Mills stress-energy tensor,

T µν =
1

4π
(γabF µρ

a F ν
b ρ −

1

4
gµνF ρσ

a F a
ρσ), (2.12)

into the Einstein equations as the source term, and insisting that g in (2.11) solves

the field equations, the equations become coupled. This coupled system, (2.1) and

(2.11) with T given by (2.12), form the Einstein-Yang-Mills equations.

Initial data for the Yang-Mills equations is a pair (A, ε), where the Hamilto-

nian position variable, A, is the orthogonal projection of 4A onto the initial data

surface, and the associated canonical momentum variable is

εia = −4Ei
a

√
g = −4F 0i

a

√
g;

negative four times the Yang-Mills electric field density, as viewed by a Gaus-

sian normal set of observers for the initial data slice. We will use both E and ε

throughout this thesis, as it will often be more illuminating to express things in

terms of the electric and magnetic fields, rather than A and ε. The Yang-Mills

magnetic field density, B, also viewed by a Gaussian normal set of observers, is
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defined analogously to the electromagnetic case. We write

Bi
a =

1

2
γabε

ijkF b
jk =

1

2
γabε

ijk(∇jA
b
k −∇kA

b
j + [Aj, Ak]

b), (2.13)

where ε is the Levi-Civita symbol; a completely antisymmetric tensor density of

weight 1. The Yang-Mills equations impose additional constraints on the initial

data, analogous to the Gauss law in electromagnetism:

∇jE
j
a + Cc

abA
b
jE

j
c = 4πρa, (2.14)

where the source term, ρ, is a g-valued function on M, corresponding to the

Yang-Mills electric charge density.

The Yang-Mills initial data evolves according to

∂

∂t
Aai = LXAai +

1

4
Nεai g

−1/2 −∇iV
a − Ca

bcA
b
iV

c, (2.15)

∂

∂t
εia = LXεia − εijk

(
∇j(NBakg

−1/2) + CabcNB
c
kA

b
jg
−1/2

)
− Cb

caε
i
bV

c, (2.16)

where we have assumed no 3-current source term. By inserting the Yang-Mills

stress energy tensor (2.12) into (2.2) - (2.5), the constraint and evolution equations

for the coupled system are obtained.

In the published literature, the weakest regularity assumptions to ensure that

the Yang-Mills Cauchy problem on a curved background is well-posed, are due to

Chruściel and Shatah [24]. Specifically, it is required that the initial data have

local regularity, (A,E) ∈ H3
loc ×H2

loc. However, a recent preprint of Ghanem [36]

improves this to the same regularity required for data on a Minkowski background,

(A,E) ∈ H2
loc ×H1

loc [31, 43].

The phase space for the Einstein-Yang-Mills equations considered here is

tuples, (g, A, π, ε), with local regularity H2 × H2 × H1 × H1 and appropriately
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prescribed asymptotics. This is, we have sufficient regularity for each of the Ein-

stein equations and Yang-Mills equations to have well-posed Cauchy problems, so

one would expect that the coupled system is also well posed; however, to the best

of the author’s knowledge this has yet to be explicitly demonstrated.

Throughout this work we primarily concern ourselves with the constraint

equations and make very little reference to the underlying G-bundle.

2.3 Black Hole Mechanics

It is universally known that entropy is a non-decreasing function of time. As such,

a system with high entropy collapsing to a black hole, which is characterised by

only a handful of parameters, may give pause. However, this apparent paradox is

resolved by the advent of black hole thermodynamics and the remarkable results of

Bardeen, Carter, Hawking [8] and Bekenstein [14]. Hawking’s area theorem states

that the surface area of spacelike cross-sections of a black hole’s event horizon is

non-decreasing with time. Bekenstein then proposed a generalised second law [15]

of thermodynamics, stating that the usual thermodynamic entropy plus a multiple

of the horizon area is non-decreasing with time. This new measure of entropy now

bears both of their names: Bekenstein-Hawking entropy.

By considering quantum field theory on a black hole background, Hawking

demonstrated another remarkable property of black holes; namely, that they ac-

tually radiate energy [39]. A black hole emits electromagnetic radiation as would

a black body, with temperature proportional to the surface gravity of the black

hole. It may seem tenuous to call this a duality between the laws of thermo-

dynamics and black hole mechanics, but the relationship is much stronger than

this. Bardeen, Carter and Hawking described the following four laws of black hole

mechanics entirely analogous to the regular laws of thermodynamics:



Chapter 2. Background 13

The Zeroth Law of Thermodynamics. A system in equilibrium has constant

temperature throughout.

The Zeroth Law of Black Hole Mechanics. A stationary black hole has con-

stant surface gravity.

The First Law of Thermodynamics. For any perturbation to a system in

equilibrium, the following differential relationship is satisfied:

dE = TdS − PdV, (2.17)

where E is the energy, T is the temperature, S is the entropy, P is the pressure

and V is the volume.

The First Law of Black Hole Mechanics. For any perturbation to a stationary

black hole, the following differential relationship is satisfied:

dm =
κ

8π
dA+ ΩdJ + V · dQ, (2.18)

where m is the mass, κ is the surface gravity, A is the horizon area, Ω is the

angular velocity, J is the angular momentum, V is the electric potential and Q is

the electric charge of the black hole.

The Second Law of Thermodynamics. The entropy of an isolated system

never decreases.

The Second Law of Black Hole Mechanics. The horizon area of a black hole

never decreases.

The Third Law of Thermodynamics. It is impossible to reduce the temperature

of a system to zero in finite time.

The Third Law of Black Hole Mechanics. It is impossible to reduce the

surface gravity of a black hole to zero in finite time.
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All four laws are included to motivate the duality, however it is the first law

that is the main focus of this work; the zeroth law is also briefly mentioned in

Chapter 6. When the laws are stated, it is often implicit that one is considering

only pure Einstein black holes or Einstein-Maxwell black holes. However, the laws

as stated above, are unchanged in the Einstein-Yang-Mills case, which is the case

considered in this work. In fact, there are also versions of these laws when gravity

is coupled to other fields [40, 52].

2.4 Linearisation Stability

The property of linearisation stability is concerned with the validity of first order

perturbation theory. Suppose F (x) = c is a system of equations with a known

solution, x = x0. First-order perturbation theory is a method to give approximate

solutions nearby x0. If y is a solution to the linearised equation DFx[y] = 0 then

x = x0 +εy is expected to be an approximate solution to F(x)=c, for small epsilon.

The system F (x) = c is said to be linearisation stable at x0 if for every solution,

y, to the linearised equation, there exists a curve of solutions x(t) with x(0) = x0

and x′(0) = y. This is equivalent to the condition that the level sets, F−1(c), have

a manifold structure.

The first-order perturbation theory is often used in place of the full Einstein

equations to describe weak gravitational fields such as gravitational waves [34], or

may be used to discuss stability of solutions under perturbations [51]. Naturally,

it is then important to ensure that the Einstein equations are indeed linearisation

stable.

Linearisation stability was first established for perturbations to Minkowski

space by Choquet-Bruhat and Deser in 1973 [22]. Then in the same year, Fischer

and Marsden established linearisation stability for generic solutions with a com-

pact Cauchy surface [32], however linearisation stability fails for some exceptional
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solutions. These exceptional solutions were subsequently shown by Moncrief to be

exactly when the Cauchy development contains a Killing vector field [48]. These

results were then extended by Arms to the Einstein-Maxwell [1] and Einstein-

Yang-Mills [2] cases, in 1977 and 1979 respectively.

Linearisation stability has also been studied in many other contexts, includ-

ing gravity coupled to self-gravitating scalar fields [53] and cosmological models

[18, 19]. Of particular interest, is the case where the Cauchy surface is an asymp-

totically flat manifold, as these solutions represent isolated gravitating systems.

This case was not established until 2005 by Bartnik [11]1, and unlike compact case,

the asymptotically flat case is linearisation stable at all solutions.

The results in Chapter 4 prove linearisation stability for the Einstein-Maxwell

and Einstein-Yang-Mills constraints on an asymptotically flat manifold. This es-

sentially fills a gap in the collection of works by Fischer, Marsden, Arms and

Bartnik.

1At the time of publication, existence and uniqueness results for the regularity class used
in Bartnik’s work was not available, however it was mentioned that this work would imply
linearisation stability given such results were established. The recent resolution of the bounded
L2 curvature conjecture [44] provides exactly such existence and uniqueness results.





Chapter 3

Weighted Sobolev Spaces
The miracle of the appropriateness of the language of

mathematics for the formulation of the laws of physics

is a wonderful gift which we neither understand nor

deserve.

Eugene Wigner

It is well known that Sobolev spaces are a natural setting for the study

of PDEs. Unfortunately, several key properties of Sobolev spaces on bounded

domains do not carry over to unbounded domains. Let W̊ k,p(Ω) be the completion

of C∞c (Ω) with respect to the usual W 2,2 norm, where Ω ⊂ Rn is bounded with

smooth boundary. It is well-known that the Laplacian has nice mapping properties

bounded domains; however, the map ∆ : W̊ 2,2(Rn)→ L2(Rn) does not even have

closed range.

The weighted Sobolev and Lebesgue spaces, introduced by Cantor [20], are

often more appropriate spaces for the study of PDEs on unbounded domains; for

example, when considered as a map between these spaces, the Laplacian is indeed

Fredholm, ∆ : W 2,2
δ (Rn) → L2

δ−2(Rn) [21, 47]. This fact will be particularly im-

portant in the proof of Theorem 4.15. In this Chapter, we introduce the weighted

Lebesgue (Lpδ) and Sobolev (W k,p
δ ) spaces, and some useful results pertaining to

them.

17
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The definitions and results presented here are for weighted spaces on Rn,

however this is simply for the sake of presentation. As the weights are only signif-

icant near infinity, these results clearly hold for an asymptotically flat manifold in

the sense of Chapter 4. Defining the spaces on Rn simply allows us to reserve the

introduction of asymptotically flat manifolds for the following Chapter. Most of

the results presented here are well-known and are frequently used in the study of

asymptotically flat manifolds. It is useful to collect these results together in one

place for reference.

Define the weighted norms,

‖u‖p,δ =


(∫

Rn |u|p r−δp−ndxn
)1/p

, p <∞

ess sup
Rn

(r−δ|u|), p =∞
(3.1)

‖u‖k,p,δ =
k∑
|α|=0

‖∂αu‖p,δ−|α|, (3.2)

where r(x) =
√

1 + |x|2 and α is a multi-index, in the usual sense. The spaces

Lpδ(Rn) and W k,p
δ (Rn) are then defined as the completion of C∞c (Rn) with respect

to these norms, respectively. Weighted spaces of sections of bundles are defined in

the usual way. Intuitively, these spaces are function spaces with local regularity

Lp and W k,p, which behave like o(rδ) at infinity and whose derivatives decay

appropriately. We will often omit reference to Rn, the manifold, or the bundle

that we are taking sections of, and simply write the spaces as W k,p
δ when there is

no risk of confusion.



Chapter 3. Weighted Sobolev Spaces 19

The following weighted versions of standard inequalities (see, for example,

[9, 21]) will be used frequently throughout this thesis:

Proposition 3.1 (Lebesgue embedding). If 1 ≤ p ≤ q ≤ ∞, δ2 < δ1 and u ∈ Lqδ2,

then

‖u‖p,δ1 ≤ c ‖u‖q,δ2 , (3.3)

and therefore Lqδ2 ⊂ Lpδ1.

Proposition 3.2 (Hölder’s inequality). If u ∈ Lqδ1, v ∈ Lsδ2 and δ = δ1 + δ2,

1 ≤ p, q, s ≤ ∞, then

‖uv‖p,δ ≤ ‖u‖q,δ1 ‖v‖s,δ2 , (3.4)

where 1/p = 1/q + 1/s.

Proposition 3.3 (Interpolation inequality). For any ε > 0, there is a constant,

c(ε), such that for all u ∈ W 2,p
δ ,

‖u‖1,p,δ ≤ ε ‖u‖2,p,δ + c(ε) ‖u‖p,δ , (3.5)

for 1 ≤ p ≤ ∞.

Proposition 3.4 (Sobolev inequality). If u ∈ W k,p
δ , then

‖u‖np/(n−kp),δ ≤ c ‖u‖k,q,δ (3.6)

for q satisfying p ≤ q ≤ np/(n− kp).

If kp > n then

‖u‖∞,δ ≤ c‖u‖k,p,δ. (3.7)

Remark 3.5. The four inequalities above are all valid when the integrals, defining

the norms, are taken over bounded domains.
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Proposition 3.6 (Poincaré inequality). For any u ∈ W 1,p
δ , δ < 0, we have

‖u‖p,δ ≤ c‖∂u‖p,δ−1. (3.8)

There is also a weighted version of the Rellich compactness theorem, which

we require for the proof of Theorem 4.15.

Proposition 3.7 (Rellich compactness). For k1 > k2, δ1 < δ2 and 1 ≤ p < ∞,

the inclusion W k1,p
δ1
⊂ W k2,p

δ2
is compact.

We also need some results that are specifically tailored to our particular

problem. When integrating a divergence over the whole manifold, the divergence

theorem gives boundary integrals “at infinity”, which are to be understood in

the sense of a limit. While some of these boundary integrals will correspond

to physically relevant quantities, others are essentially irrelevant. The following

Proposition from [11] allows us to control these terms that are not physically

relevant.

Let BR be the open ball of radius R centred at zero and define ER = Rn\BR,

AR = B2R \BR and SR = BR \BR.

Proposition 3.8. Suppose u ∈ W 1,2
−3/2(ER0) for some R0 ≥ 1. Then u ∈ L1(SR)

for every R ≥ R0, and there is a constant c, independent of R, such that

∮
SR

|u| ≤ c
√
R‖u‖1,2,−3/2:AR

, (3.9)

where the notation in (3.9) indicates that the norm is taken over AR.

‘



Chapter 4

The Phase Space for the

Einstein-Yang-Mills Equations

and the Constraint Submanifold
The world is full of obvious things which nobody by any

chance ever observes.

Sherlock Holmes

Now that we have discussed the relevant background and machinery, we are

able to get to the crux of the thesis. We begin by introducing the phase space for

the Einstein-Yang-Mills equations. The results here extend Bartnik’s work on the

phase space for the Einstein equations on an asymptotically flat manifold [11], to

the Einstein-Yang-Mills case.

Alternatively, this Chapter may be viewed as an extension of Arms’ work on

the linearisation stability of the Einstein-Maxwell [1] and Einstein-Yang-Mills [2]

equations; where Arms considered the constraint equations on a compact manifold,

we consider the asymptotically flat case. Linearisation stability is briefly discussed

at the end of the Chapter.

21
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4.1 The Phase Space

We begin by defining the 3-manifold, on which our initial data is to be defined.

LetM be a paracompact, connected, non-compact 3-manifold without boundary.

Further suppose that there exists a compact set, K, such thatM\K =
⋃N
n=1 Mn,

where each Mn is diffeomorphic to R3 minus the closed unit ball. That is, there

exists a collection of diffeomorphisms, φn : Mn → B1(0) ∈ R3. We call each Mn

an asymptotic end of M.

Fix a smooth background metric, g̊, such that g̊ = φ∗n(gR3), the pullback of

the Euclidean metric, on each Mn. Further, fix a smooth function, r ≥ 1, with

r = |x| on each Mn. A Riemannian manifold, (M, g), withM as above, satisfying

(g − g̊) = o(r−1/2), ∂g = o(r−3/2) and ∂2g = o(r−5/2), is called an asymptotically

flat manifold with N ends. We write ER = {x ∈M \K : r(x) > R} to denote

some exterior region, and define the set BR =M\ ER, which acts as a large ball

inM. We also make use of annular regions, AR = B2R \BR. Note that the regions

ER and AR are each comprised of N disconnected components.

Let g be the Lie algebra of a compact Lie group, and let (A, ε) be initial data

for the Yang-Mills fields as described in Section 2.2. Again, let γ be a positive

definite inner product on g, with which Lie algebra indices are raised and lowered.

By setting g = u(1) it is clear that the results throughout this work are also valid

for the Einstein-Maxwell system.

The regularity assumptions, (g, A, π, ε) ∈ W 2,2
loc ×W

2,2
loc ×W

1,2
loc ×W

1,2
loc , men-

tioned at the end of Section 2.2, are motivated by the following considerations.

Two derivatives of the metric are required to make sense of the curvature, and

since π is in some sense a derivative of the 4-metric, we expect to need one deriva-

tive. This is also required to make sense of the momentum constraint. Similarly,

we need one derivative of the field strength tensor to make sense of the Yang-Mills

equations, which amounts to taking two derivatives of A and one derivative of ε.
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The phase space is then a Hilbert manifold modelled on the weighted Lebesgue

and Sobolev spaces of Chapter 3, where the norms are defined with respect to g̊;

that is,

‖u‖p,δ =


(∫
M |u|

p r−δp−n
√
g̊dxn

)1/p
, p <∞

ess sup
M

(r−δ|u|), p =∞
(4.1)

‖u‖k,p,δ =
k∑
|α|=0

‖∇̊αu‖p,δ−|α|. (4.2)

For the study of asymptotically flat manifolds, it is sensible to have (g−g̊) ∈ W 2,2
−1/2,

and therefore π ∈ W 1,2
−3/2. Imposing ε ∈ W 1,2

−3/2 enforces the usual 1
r2

fall off of the

electric field in electromagnetism, however the appropriate domain for A is less

obvious. Split g into its centre, z, and a γ-orthogonal subspace, k, and decompose

A into A = Az +Ak, with Az valued in z and Ak valued in k. We consider A to be

such that Az ∈ W 2,2
−1/2 and Ak ∈ W 2,2

−3/2.

The decay conditions on A are chosen so that the gauge covariant derivative,

D̂ := ∂ + [A, ·] ∼ ∂ + Ak, behaves analogously to the usual covariant derivative

at infinity; that is, D̂θ = ∂θ + o(r−3/2)θ. Although it may appear somewhat

unnatural to require this condition for the analysis, such a condition is in fact

required to ensure that the total charge is well-defined [25]1. This condition also

puts the electric and magnetic fields on equal footing (see Proposition 4.3). In

the language of physics, we require that the Yang-Mills fields are asymptotic to

photon fields before vanishing.

We are now ready to define the following spaces, which formally describe the

phase space:

G : = W 2,2
−1/2(S2), K : = W 1,2

−3/2(S2 ⊗ Λ3),

A : = W 2,2
−1/2(T ∗M⊗ z)⊕W 2,2

−3/2(T ∗M⊗ k), E : = W 1,2
−3/2(TM⊗ g∗ ⊗ Λ3),

1See also, the brief discussion under (5.11).
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where S2 and S2 are symmetric covariant and contravariant 2-tensors, and Λ3 and

Λ0 are volume forms and scalar functions onM, respectively. The direct sum in the

definition of A is to be understood as the internal direct sum in W 2,2
−1/2(T ∗M⊗ g),

and the norm on A is given by the usual direct sum norm,

‖A‖A := ‖Az‖2,2,−1/2 + ‖Ak‖2,2,−3/2. (4.3)

Further, define the spaces

G+ : = {g ∈ S2 | (g − g̊) ∈ G, g > 0}, G+
λ : = {g ∈ G+ | λ̊g < g < λ−1g̊},

N : = L2
−1/2(Λ0 × TM× g⊗ Λ0), N ∗ : = L2

−5/2(Λ3 × T ∗M⊗ Λ3 × g∗ ⊗ Λ3),

for λ > 0. The target space, N ∗, is the space of source terms, and its adjoint, N ,

is identified with a space vector fields on the bundle, P.

The phase space for the Einstein-Yang-Mills equations is then

F := G+ ×A×K × E , (4.4)

which does not depend on the choice of g̊ [11].

It is useful to note that both g and A are continuous by the Sobolev-Morrey

embedding, C0,1/2 ⊂ W 2,2 (see, for example, [37]), and therefore the conditions

defining G+ and G+
λ are understood in the pointwise sense. In particular, if g ∈ G+

λ

then

λ̊gij(x)vivj < gij(x)vivj < λ−1g̊ij(x)vivj (4.5)

for all x ∈M and v ∈ TxM.
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4.2 Elementary Estimates

For the sake of presentation, some elementary estimates are gathered here to be

referenced in subsequent sections. Throughout this thesis, c is used to denote

arbitrary constants, which may change from line to line. The first estimate below

is very simple, however as it is used frequently throughout, it is included as a

stand-alone Proposition.

Proposition 4.1. For u ∈ W 1,2
δ ,

‖u2‖2,2δ ≤ c‖u‖2
1,2,δ. (4.6)

Proof. Simply noting that ‖u2‖2,2δ =
(∫
M |u|

4r−4δ−ndxn
)1/2

= ‖u‖2
4,δ, the weighted

Sobolev inequality (3.6) gives (4.6).

Since the Riemann curvature behaves like a second derivative of the metric

and the scalar curvature is the dominant term in the Hamiltonian constraint (2.2),

the following L2
−5/2 estimates are required.

Proposition 4.2. For g ∈ G+
λ ,

‖R(g)‖2,−5/2 ≤ c(λ)‖Ric(g)‖2,−5/2 ≤ c(λ)‖Riem(g)‖2,−5/2 ≤ c(λ)(1+‖∇̊g‖2
1,2,−3/2),

where c(λ) is some constant depending on λ, which may vary between each in-

equality.

Proof. The Riemann curvature may be expressed symbolically as

Riem ∼ ˚Riem+ g−1∇̊2g + (g−1)2(∇̊g)2,
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where ˚Riem refers to the Riemann curvature of g̊. See Appendix A for the full

expression. Making use of (3.6), (4.5) and (4.6),

‖Riem(g)‖2,−5/2 ≤ c(λ)(1 + ‖∇̊2g‖2,−5/2 + ‖(∇̊g)2‖2,−5/2)

≤ c(λ)(1 + ‖∇̊g‖1,2,−3/2 + ‖∇̊g‖2
1,2,−3/2)‖

≤ c(λ)(1 + ‖∇̊g‖2
1,2,−3/2).

Since the Ricci and scalar curvatures are simply obtained by taking traces, their

norms are clearly bound by c(λ)‖Riem(g)‖.

The following Proposition shows that the decay conditions on A ensure that

the electric and magnetic fields are considered on the same footing.

Proposition 4.3. If A ∈ A, then

‖B‖1,2,−3/2 ≤ c
(
1 + ‖A‖2

A
)
, (4.7)

and in particular, B ∈ E.

Proof. Making use of (3.4) and (3.6),

‖∇̊B‖2,−5/2 ≤ c
(
‖∇̊2A‖2,−5/2 + ‖∇̊(Ak)Ak‖2,−5/2

)
≤ c

(
‖∇̊2A‖2,−5/2 + ‖∇̊Ak‖2,−5/2‖Ak‖∞,0

)
≤ c

(
‖∇̊2A‖2,−5/2 + ‖∇̊Ak‖2,−5/2‖Ak‖2,2,0

)
≤ c

(
1 + ‖A‖2

A
)
.

The proof is completed by an application of the weighted Poincaré inequality

(3.8).

The difference of Christoffel symbols tensor, Γ̃ := Γ − Γ̊, is also useful for

several estimates. This can be controlled by the norm of g as follows.



Chapter 4. The Phase Space for the EYM Equations 27

Proposition 4.4. For g ∈ G+
λ , λ > 0 we have

‖Γ̃‖1,2,−3/2 ≤ c(λ)(1 + ‖∇̊g‖2
1,2,−3/2). (4.8)

Proof. Employing the standard trick of fixing a point p ∈ M and choosing coor-

dinates such that Γ̊ = 0 and ∇̊ = ∂ at p, we have

Γ̃ijk =
1

2
gil(∇̊jglk + ∇̊kgjl − ∇̊lgjk) (4.9)

at p. Since (4.9) is tensorial, its validity is independent of the coordinate choice

and as p was arbitrary the expression holds everywhere on M. Differentiating

(4.9), and making use of (4.5) and (4.6) yields

‖∇̊Γ̃‖2,−5/2 ≤ c(λ)
(
‖(∇̊g)2‖2,−5/2 + ‖∇̊2g‖2,−5/2

)
(4.10)

≤ c(λ)
(
‖∇̊g‖2

1,2,−3/2 + ‖∇̊2g‖2,−5/2

)
(4.11)

≤ c(λ)(1 + ‖∇̊g‖2
1,2,−3/2). (4.12)

An application of the weighted Poincaré inequality (3.8) now completes the proof.

4.3 The Constraint Map

We begin by writing the left-hand side of the constraint equations, (2.2), (2.3),

(2.14), as a map acting on the phase space:

Φ0(g, A, π, ε) =
(1

2
(πkk)2 − πijπij − (

1

8
εkaε

a
k + 2Bk

aB
a
k)
)
g−1/2 +R

√
g

=
(1

2
(πkk)2 − πijπij − 2(Ek

aE
a
k +Bk

aB
a
k)
)
g−1/2 +R

√
g, (4.13)

Φi(g, A, π, ε) = 2∇jπij − εja(∇̊iA
a
j − ∇̊jA

a
i ) + Aai ∇̊jε

j
a, (4.14)

Φa(g, A, π, ε) = −∇̊jε
j
a − Cc

abA
b
jε
j
c, (4.15)
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where the Yang-Mills stress-energy tensor is included in the definitions of Φ0 and

Φi. This is called the constraint map and level sets of Φ correspond to the sets of

solutions to the Einstein-Yang-Mills constraints, for fixed sources. Note that ∇̊ is

used in place of ∇ in (4.14) and (4.15). This is due to the antisymmetry in the

derivatives of A, and since ε is a vector density; any torsion-free connection may

be used here. The momentum constraint sometimes differs from the one used here

by the term, Aai (∇̊jε
j
a +Cc

abA
b
jε
j
c), however this is a simply a multiple of the Gauss

constraint so adopting the alternative momentum constraint makes no difference

to the conclusions.

As it is to be shown that the level sets of the constraint map are smooth

submanifolds of F , it is required that we show that this map is indeed smooth.

For this, we first establish the following estimate:

Proposition 4.5. Suppose (g, A, π, ε) ∈ G+
λ × A × K × E ⊂ F for some fixed

λ > 0, then there exists a constant c(λ) such that

‖Φ0(g, A, π, ε)‖2,−5/2 ≤ c(λ)(1 + ‖g − g̊‖2
2,2,−1/2 + ‖π‖2

1,2,−3/2

+ ‖ε‖2
1,2,−3/2 + ‖A‖4

A), (4.16)

‖Φi(g, A, π, ε)‖2,−5/2 ≤ c(λ)
(
‖π‖1,2,−3/2(1 + ‖∇̊g‖2

1,2,−3/2)

+ ‖ε‖1,2,−3/2‖A‖A
)
, (4.17)

‖Φa(g, A, π, ε)‖2,−5/2 ≤ c(λ) ‖ε‖1,2,−3/2 (1 + ‖A‖A). (4.18)

Proof. Making use of the pointwise bounds (4.5), and Propositions 4.1, 4.2 and

4.3,

‖Φ0(g, A, π, ε)‖2,−5/2 ≤ c(λ)
(
‖R‖2,−5/2 + ‖π2‖2,−5/2 + ‖ε2‖2,−5/2 + ‖B2‖2,−5/2

)
≤ c(λ)

(
1 + ‖∇̊g‖2

1,2,−3/2 + ‖π‖2
1,2,−3/2 + ‖ε‖2

1,2,−3/2

+ ‖B‖2
1,2,−3/2

)
≤ c(λ)

(
1 + ‖∇̊g‖2

1,2,−3/2 + ‖π‖2
1,2,−3/2 + ‖ε‖2

1,2,−3/2 + ‖A‖4
A
)
,
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which establishes (4.16).

Using the weighted Sobolev (3.6) and Hölder (3.4) inequalities again, (4.17)

is similarly obtained:

‖Φi(g, A, π, ε)‖2,−5/2 ≤ c
(
‖∇π‖2,−5/2 + ‖ε∇̊A‖2,−5/2 + ‖A∇̊ε‖2,−5/2

)
≤ c
(
‖∇̊π‖2,−5/2 + ‖Γ̃π‖2,−5/2 + ‖ε‖4,−5/4‖∇̊A‖4,−5/4

+ ‖A‖∞,0‖∇̊ε‖2,−5/2

)
≤ c
(
‖π‖1,2,−3/2 + ‖Γ̃‖4,−5/4‖π‖4,−5/4 + ‖ε‖1,2,−3/2‖A‖2,2,−1/2

)
≤ c
(
‖π‖1,2,−3/2(1 + ‖∇̊g‖2

1,2,−3/2) + ‖ε‖1,2,−3/2‖A‖A
)
.

Finally,

‖Φa(g, A, π, ε)‖2,−5/2 ≤ c(‖ε‖1,2,−3/2 + ‖Ak‖4,−5/4‖ε‖4,−5/4)

≤ c(‖ε‖1,2,−3/2 + ‖Ak‖1,2,−3/2‖ε‖1,2,−3/2)

≤ c‖ε‖1,2,−3/2(1 + ‖A‖A),

establishing (4.18) and completing the proof.

From this estimate it can be shown that Φ is a smooth map.

Theorem 4.6. Φ : F → N ∗ is a smooth map of Hilbert manifolds.

Proof. It can be seen from Proposition 4.5, that Φ : F → N ∗ is locally bounded.

The scalar curvature can be expressed as a polynomial function in g, g−1, ∇̊g and

∇̊2g (cf. Appendix A), and therefore the constraint map can be expressed as a

polynomial function in 12 variables,

Φ̃(g, g−1,
√
g, 1/
√
g, ∇̊g, ∇̊2g, π, ∇̊π, ε, ∇̊ε, A, ∇̊A) = Φ(g, A, π, ε). (4.19)

For positive definite matrices, the maps g 7→ ∇̊g, g 7→ ∇̊2g, A 7→ ∇̊A, g 7→ √g,

etc. are smooth. Further, locally bounded polynomial functions are smooth (in the
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sense of Fréchet differentiability) (see, for example, [41], Chapter 26). It follows

that Φ is a smooth map of Hilbert manifolds.

In the above we restricted ourselves to G+
λ to obtain the local bound, however

this is not necessary. We could instead express each g as (g − g̊) + g̊ and an

estimate independent of λ is obtained, however the use of λ simplifies the estimates

significantly.

4.4 The Operators DΦ and DΦ∗

The following consequence of the implicit function theorem (see [27], Chapter VII)

is central to establishing that the level sets of Φ are Hilbert submanifolds of F .

Theorem 4.7. Let f : X → Y be a C1 mapping between Banach manifolds.

If Dfx : TxX → Tf(x)Y is surjective and has complementable kernel for all

x ∈ S := f−1(c), for some c ∈ Y , then S is a submanifold of X.

In the above, complementable kernel means that the TxX splits into the

direct sum of kerDfx and a closed complementary subspace.

Theorem 4.7 motivates an examination of the linearised constraint map,

DΦ(g,A,π,ε) : T(g,A,π,ε)F → N ∗, and its formal adjoint, DΦ∗(g,A,π,ε). In this section

we establish some results concerning DΦ(g,A,π,ε) and DΦ∗(g,A,π,ε), and we return to

Theorem 4.7 in Section 4.5.

Where there is no risk of confusion, reference to the base point, (g, A, π, ε),

is omitted and we simply write DΦ or DΦ∗. For convenience, we use the notation

DΦ(g,A,π,ε) = (DΦ0, DΦi, DΦa) and DΦ∗(g,A,π,ε) = (DΦ∗g, DΦ∗A, DΦ∗π, DΦ∗ε). While

cumbersome to explicitly write, it is a simple computation to calculate the opera-

tors DΦ and DΦ∗ (cf. [2, 33]). The formal adjoint is computed by acting DΦ on
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a variation (h, b, p, f) ∈ T(g,A,π,ε)F , pairing it with (N,X, V ) ∈ N , and formally

integrating by parts. We arrive at the expressions,

DΦ0[h, b, p, f ] = (πkkπ
ij − 2πikπjk − 2(Ei

aE
aj +Bi

aB
aj))hijg

−1/2

+ (
1

2
πijπij −

1

4
(πkk)2 + (Ek

aE
a
k +Bk

aB
a
k))hjjg

−1/2

+ (
1

2
hkkR−∆hkk +∇i∇jhij −Rijhij)

√
g

− 4εijk(∇̊jb
a
k + Ca

bcA
b
jb
c
k)Baig

−1/2

+ (pkkπ
j
j − 2πijpij)g

−1/2 + f iaE
a
i g
−1/2, (4.20)

DΦi[h, b, p, f ] = 2∇j(π
jkhik)− πjk∇ihjk − εja(∇̊ib

a
j − ∇̊jb

a
i ) + bai ∇̊jε

j
a

+ 2∇jp
j
i − f ja(∇̊iA

a
j − ∇̊jA

a
i ) + Aai ∇̊jf

j
a , (4.21)

DΦa[h, b, p, f ] =− (Cc
abε

j
cb
b
j + ∇̊jf

j
a + Cc

abf
j
cA

b
j), (4.22)

and

DΦ∗g[N,X, V ] =LXπij +N
(
πkkπ

ij − 2πikπjk − 2(Ei
aE

aj +Bi
aB

ai)

+

{
1

2
πklπkl −

1

4
(πkk)2 + (Ek

aE
a
k +Bk

aB
a
k)

}
gij
)
g−1/2

+

{
N(

1

2
Rgij −Rij) +∇i∇jN − gij∇k∇kN

}
√
g, (4.23)

DΦ∗A[N,X, V ] =LXεia − Cb
caε

i
bV

c

− 4εijk
{
∇j(NBakg

−1/2) + CabcNB
c
kA

b
jg
−1/2

}
, (4.24)

DΦ∗π[N,X, V ] =N(gijπ
k
k − 2πij)g

−1/2 − LXgij, (4.25)

DΦ∗ε[N,X, V ] =− 1

4
Nεai g

−1/2 − LXAai + ∇̊iV
a + Ca

bcA
b
iV

c. (4.26)
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In the above, L denotes the usual Lie derivative, which can be expressed in

term of a given connection as follows:

LXgij = Xk∇̊kgij + gkj∇̊iX
k + gki∇̊jX

k

= ∇iXj +∇jXi

LXAai = Xk∇̊kA
a
i + Aak∇̊iX

k

LXπij = Xk∇̊kπ
ij − πjk∇̊kX

i − πik∇̊kX
j + πij∇̊kX

k

LXεia = Xk∇̊kε
i
a − εka∇̊kX

i + εia∇̊kX
k.

The expressions (4.23)-(4.26) are in terms of the Lie derivative, rather than

the connection, to illuminate their relationship with the evolution equations, (2.4),

(2.5), (2.15), (2.16). We write ξ = (ξ0, ξi, ξa) = (N,X, V ) ∈ N , which is to be

identified with a vector field on the principal bundle.

We first establish that the kernel of DΦ∗ is trivial. In the cases considered

by Fischer, Marsden [32, 33] and Arms [1, 2], where M is a compact manifold,

this is not necessarily true. For some particular solutions, (g, A, π, ε), the kernel of

DΦ∗(g,A,π,ε) does indeed contain non-trivial elements, and these solutions are exactly

those that are not linearisation stable [48]. Non-trivial elements of the kernel

correspond to vector fields on the bundle whose integral curves are symmetries of

the initial data [48, 49]. This is motivated by the fact,

∂

∂t
(π, ε,−g,−A) = DΦ∗[ξ],

where (N,X) is the lapse-shift 4-vector and V is the electric potential (cf. (2.4),

(2.5), (2.15), (2.16)). This is discussed in greater detail in Chapter 6.

Note, the expressions (4.23)-(4.26) are only understood for suitably differen-

tiable ξ, however DΦ∗ acts on a space with only L2 regularity. That is, DΦ∗[ξ]

may only be understood in the weak sense for a generic ξ ∈ N . A weak solution
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of DΦ∗[ξ] = f is an element ξ ∈ N such that

∫
M
ξ ·DΦ[h, b, p, f ] =

∫
M
f · (h, b, p, f), (4.27)

for all (h, b, p, f) ∈ G ×A×K × E = T(g,A,π,ε)F .

In order to examine the kernel of DΦ∗, it is first shown that a weak solution

of DΦ∗[ξ] = (f1, f2, f3, f4), where (f1, f3, f4) ∈ L2
−5/2 ×W

1,2
−3/2 ×W

1,2
−3/2, is in fact

a strong solution. To demonstrate this, we require the coercivity estimate given

by Lemma 4.8 below. Note that in the proof of this estimate, and throughout

the rest of the thesis, C denotes an arbitrary constant that depends on a fixed,

(g, A, π, ε) ∈ F . When the constant changes from c to C, this is to indicate that

the constant has absorbed terms depending on (g, A, π, ε).

Lemma 4.8. If ξ ∈ W 2,2
−1/2 satisfies DΦ∗[ξ] = (f1, f2, f3, f4) with (f1, f3, f4) ∈

L2
−5/2 ×W

1,2
−3/2 ×W

1,2
−3/2, then

‖ξ‖2,2,−1/2 ≤ C
(
‖f1‖2,−5/2 + ‖(f3, f4)‖1,2,−3/2 + ‖ξ‖2,0

)
. (4.28)

Proof. The weighted Poincaré inequality (3.8) gives

‖ξ‖2,2,−1/2 ≤ c‖∇̊2ξ‖2,−5/2, (4.29)

and therefore only an estimate for the second derivative is required.

Rearranging (4.23) gives

∇i∇jN − gij∇k∇kN = Sij,



Chapter 4. The Phase Space for the EYM Equations 34

where S is given by

√
gSij = DΦ∗g[ξ]

ij −N
(
πkkπ

ij − 2πikπjk − 2(Ei
aE

aj +Bi
aB

ai)

+

{
1

2
πklπkl −

1

4
(πkk)2 + (Ek

aE
a
k +Bk

aB
a
k)

}
gij
)
g−1/2

−
{
N(

1

2
Rgij −Rij)

}
√
g + LXπij.

From this, we can then write

∇i∇jN = Sij − 1

2
gijSkk , (4.30)

which gives an estimate for ∇2N :

‖∇2N‖2,−5/2 ≤ C‖S‖2,−5/2. (4.31)

The standard weighted Sobolev-type inequalities are applied again to give

‖∇̊2N‖2,−5/2 ≤c
(
‖DΦ∗g[ξ]‖2,−5.2 + ‖Γ̃∇̊N‖2,−5/2 + ‖π∇̊X‖2,−5/2

+ ‖X∇̊π‖2,−5/2 + ‖N‖∞,0(‖π2‖2,−5/2 + ‖E2‖2,−5/2

+ ‖B2‖2,−5/2 + ‖Ric(g)‖2,−5/2)
)

≤C(‖f1‖2,−5/2 + ‖ξ‖∞,0 + ‖∇̊ξ‖3,−1(‖Γ̃‖6,−3/2 + ‖π‖6,−3/2))

≤C(‖f1‖2,−5/2 + ‖ξ‖∞,0 + ‖∇̊ξ‖3,−1(‖Γ̃‖1,2,−3/2 + ‖π‖1,2,−3/2))

≤C(‖f1‖2,−5/2 + ‖ξ‖∞,0 + ‖∇̊ξ‖3,−1).

By making use of the Riemannian curvature identity,

RijklX
l = ∇i∇jXk −∇j∇iXk, (4.32)
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∇2X may be expressed in terms of DΦ∗π[ξ]. To see this, note that the Bianchi

identity gives the following:

∇kLXgij +∇jLXgik −∇iLXgjk =∇j∇kXi +∇i∇kXj +∇k∇jXi

+∇i∇jXk −∇k∇iXj −∇j∇iXk

=∇j∇kXi +RikjlX
l +∇k∇jXi

+RijklX
l + (∇k∇jXi −∇k∇jXi)

=RjkilX
l +RikjlX

l +RijklX
l + 2∇k∇jXi

=2(RikjlX
l +∇k∇jXi),

which relates LXg to ∇2X. In particular, we have

‖∇2X‖2,−5/2 ≤ c(‖Riem(g)‖2,−5/2‖X‖∞,0 + ‖∇LXg‖2,−5/2). (4.33)

Making use of (4.14), the Lie derivative is expressed as

LXgij = N(gijπ
k
k − 2πij)g

−1/2 − (DΦ∗π[ξ])ij, (4.34)

and the weighted Sobolev-type inequalities give

‖∇LXg‖2,−5/2 ≤ c (‖∇(Nπ)‖2,−5/2 + ‖∇f3‖2,−5/2)

≤ c
(
‖∇̊f3‖2,−5/2 + ‖Γ̃‖4,−1‖f3‖4,−3/2 + ‖∇̊N‖3,−1‖π‖6,−3/2

+ ‖N‖∞,0(‖∇̊π‖2,−5/2 + ‖Γ̃π‖2,−5/2)
)

≤ c
(
‖∇̊f3‖2,−5/2 + ‖∇̊g‖2,2,−1/2‖f3‖1,2,−3/2 + ‖∇̊N‖3,−1‖π‖1,2,−3/2

+ ‖N‖∞,0(‖∇̊π‖2,−5/2 + ‖∇̊g‖2,2.−1/2‖π‖1,2,−3/2)
)

≤ C
(
‖f3‖1,2,−3/2 + ‖N‖∞,0 + ‖∇̊N‖3,−1

)
.
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We now obtain an estimate for ‖∇̊2X‖ in terms of ‖∇2X‖ as follows:

‖∇̊2X‖2,−5/2 ≤ c
(
‖∇2X‖2,−5/2 + ‖∇̊(X)Γ̃‖2,−5/2 + ‖X∇̊(Γ̃)‖2,−5/2

+ ‖Γ̃2X‖2,−5/2

)
≤ c

(
‖∇2X‖2,−5/2 + ‖∇̊X‖3,−1‖Γ̃‖6,−3/2

+ ‖X‖∞,0(‖∇̊Γ̃‖2,−5/2 + ‖Γ̃2‖2,−5/2)
)

≤ c
(
‖∇2X‖2,−5/2 + ‖∇̊X‖3,−1‖Γ̃‖1,2,−3/2

+ ‖X‖∞,0(‖∇̊Γ̃‖2,−5/2 + ‖Γ̃‖2
1,2,−3/2)

)
≤ C

(
‖∇2X‖2,−5/2 + ‖∇̊X‖3,−1 + ‖X‖∞,0

)
.

Putting all of this together gives the estimate,

‖∇̊2X‖2,−5/2 ≤ C(‖f3‖1,2,−3/2 + ‖ξ‖∞,0 + ‖∇̊ξ‖3,−1).

Similarly, from (4.26) we have

∇̊iV
a = fa4 i +

1

4
Nεai g

−1/2 +Xk∇̊kA
a
i + Aak∇̊iX

k − Ca
bcA

b
iV

c, (4.35)

which can be differentiated to obtain an estimate for ∇̊2V :

‖∇̊2V ‖2,−5/2 ≤c
(
‖f4‖1,2,−3/2 + ‖ε∇̊N‖2,−5/2 + ‖N∇̊ε‖2,−5/2

+ ‖A∇̊2X‖2,−5/2 + ‖X∇̊2A‖2,−5/2 + ‖∇̊X∇̊A‖2,−5/2

+ ‖Ak∇̊V ‖2,−5/2 + ‖V ∇̊Ak‖2,−5/2

)
≤c
(
‖f4‖1,2,−3/2 + ‖∇̊ξ‖3,−1(‖ε‖6,−3/2 + ‖∇̊A‖6,−3/2

+ ‖Ak‖6,−3/2) + ‖ξ‖∞,0(‖∇̊ε‖2,−5/2 + ‖∇̊2A‖2,−5/2

+ ‖∇̊Ak‖2,−5/2) + ‖A‖∞,−1/2‖∇̊2X‖2,−2

)
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‖∇̊2V ‖2,−5/2 ≤c
(
‖f4‖1,2,−3/2 + ‖∇̊ξ‖3,−1(‖ε‖1,2,−3/2 + ‖A‖2,2,−3/2

+ ‖Ak‖1,2,−3/2) + ‖ξ‖∞,0(‖ε‖1,2,−3/2 + ‖A‖A)

+ ‖A‖2,2,−1/2‖∇̊2X‖2,−2

)
≤C(‖f4‖1,2,−3/2 + ‖f3‖1,2,−3/2 + ‖ξ‖∞,0 + ‖∇̊ξ‖3,−1).

Note that we have made use of the estimate for ‖∇̊2X‖2,−5/2 above. We can now

combine the separate estimates to obtain

‖∇̊2ξ‖2,−5/2 ≤ C(‖f1‖2,−5/2 + ‖(f3, f4)‖1,2,−3/2 + ‖ξ‖∞,0 + ‖∇̊ξ‖3,−1). (4.36)

We can estimate the last two terms on the right-hand side using the weighted

inequalities, Young’s inequality, and the definition of the W k,p
δ norm directly:

‖ξ‖∞,0 ≤c‖ξ‖1,4,0 = ‖ξ1/4ξ3/4‖1,4,0

≤ c‖ξ1/4‖1,8,0‖ξ3/4‖1,8,0

≤ c‖ξ‖1/4
1,2,0‖ξ‖

3/4
1,6,0

≤ c‖ξ‖1/4
1,2,0‖ξ‖

3/4
2,2,0 (4.37)

≤ c‖ξ‖1/4
1,2,0(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)3/4

≤ cε−3‖ξ‖1,2,0 + ε(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)

≤ cε−3‖ξ‖1,2,0 + ε‖∇̊2ξ‖2,−2,

for any ε > 0.
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An estimate for the final term in (4.36) is obtained almost identically:

‖∇̊ξ‖3,−1 ≤‖ξ‖1,3,0 = ‖ξ1/3ξ2/3‖1,3,0

≤ c‖ξ1/3‖1,6,0‖ξ2/3‖1,6,0

≤ c‖ξ‖1/3
1,2,0‖ξ‖

2/3
1,4,0

≤ c‖ξ‖1/3
1,2,0‖ξ‖

2/3
2,2,0 (4.38)

≤ c‖ξ‖1/3
1,2,0(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)2/3

≤ cε−2‖ξ‖1,2,0 + ε(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)

≤ cε−2‖ξ‖1,2,0 + ε‖∇̊2ξ‖2,−2.

By inserting these estimates back into (4.36), we obtain

‖∇̊2ξ‖2,−5/2 ≤ C
(
‖f1‖2,−5/2 +‖(f3, f4)‖1,2,−3/2

)
+ c(ε)‖ξ‖1,2,0 + ε‖∇̊2ξ‖2,−2, (4.39)

and then the weighted Poincaré and interpolation inequalities give

‖ξ‖2,2,−1/2 ≤ C
(
‖f1‖2,−5/2 + ‖(f3, f4)‖1,2,−3/2

)
+ c(ε)‖ξ‖2,0 + ε‖ξ‖2,2,0. (4.40)

Now choosing ε sufficiently small completes the proof.

Remark 4.9. While Lemma 4.8 gives an estimate on M, the weighted Hölder,

Sobolev and interpolation inequalities used above are also valid on AR (see Remark

3.5). In particular, we have

‖∇̊2ξ‖2,−5/2:AR
≤ C

(
‖f1‖2,−5/2:AR

+ ‖(f3, f4)‖1,2,−3/2:AR
+ ‖ξ‖2,0:AR

)
(4.41)

for ξ ∈ W 2,2
δ (AR), where C is independent of R. This is useful for the proof of

Theorem 4.10, below.

Note that the bound for ∇̊2V is the first place where we require the o(r−3/2)

decay for Ak; in earlier estimates we could have relaxed this to o(r−1). It should
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also be noted that DΦ∗A makes no appearance in Lemma 4.8. In fact, the proof

of Theorem 4.10 below requires no explicit restrictions on DΦ∗A[ξ]. However, the

conditions on DΦ∗g[ξ], DΦ∗π[ξ], DΦ∗ε[ξ] implicitly imply DΦ∗A[ξ] ∈ L2
3/2. This is a

consequence of Theorem 4.10 below, and Lemma 6.5 of Chapter 6.

Recall, for an arbitrary ξ ∈ N , we can only interpret DΦ∗ as a differential

operator in the weak sense (see 4.27). Theorem 4.10, below, gives conditions

under which we can interpret DΦ∗[ξ] = f as a differential equation in the usual

sense. This is analogous to Proposition 3.5 in [11] and in fact, local regularity is

established by an identical argument as we have an equation of the same form.

We then make use of Lemma 4.8 to establish global regularity.

Theorem 4.10. If ξ ∈ N is a weak solution of DΦ∗(g,A,π,ε)[ξ] = (f1, f2, f3, f4), with

(f1, f3, f4) ∈ L2
−5/2 ×W

1,2
−3/2 ×W

1,2
−3/2 and (g, A, π, ε) ∈ F , then ξ ∈ W 2,2

−1/2 and is

indeed a strong solution.

Proof. DΦ∗ is second order in N but only first order in both X and V , so we

differentiate DΦ∗π[ξ] and DΦ∗ε[ξ] in order to consider N , X and V on equal footing.

Explicitly, we define the operator, Ψ, by the following equation:

Ψ[ξ] :=


DΦ∗g[ξ]

∇̊DΦ∗π[ξ]

∇̊DΦ∗ε[ξ]

 =


f1

∇̊f3

∇̊f4

 . (4.42)

We first establish local regularity by restricting to a coordinate neighbourhood, Ω.

In local coordinates, (4.42) is equivalent to an expression of the form

A · ∂2ξ +B · ∂ξ + C̃ · ξ = F,

where A is invertible. Explicit expressions of ∇̊2ξ can be seen in the proof of

Lemma 4.8 and from this, it can be seen that the coefficients have regularity
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A ∈ W 2,2, B ∈ W 1,2, C̃ ∈ L2. This is then equivalent to the expression,

∂2ξα + ∂k(b
kα
ijβξ

β) + c̃αijβξ
β = f̃αij,

where b ∈ W 1,2 and c̃, f̃ ∈ L2. Therefore our weak solution, ξ ∈ L2, must satisfy

the weak form of the above expression;

∫
Ω

(∂2
ijφ

ij
α − b

kβ
ijα∂kφ

ij
β + c̃βijβφ

ij
α )ξαdx =

∫
Ω

φijα f
α
ij, (4.43)

for all compactly supported φ ∈ W 2,2(Ω). For ε � 1, let Jε be a mollification

operator, so that Jεφ ∈ C∞c (Ω). By inserting this mollified φ into (4.43) and

noting ∂(Jεφ) = Jε(∂φ), we then have

∂2ξε + ∂(Jεbξ) + Jε(c̃ξ) = Jεf̃ on Ω, (4.44)

in the strong sense, where ξε := Jεξ ∈ C∞. If we take the trace of (4.44) then the

highest order term is ∆0ξε, the Euclidean Laplacian, and we may then estimate

ξε in terms of the fundamental solution of Laplace’s equation. However, in order

to avoid introducing a boundary integral on ∂Ω, we introduce a smooth cut-off

function, χ ∈ C∞c (Ω), and let u = χξε. We then insert the trace of (4.44) into the

expression,

∆0u = χ∆0ξε + 2∂χ · ∂ξε + ξε∆0χ,

and arrive an an equation of the form

∆0u = F + ∂G,

where F = F1 +F2 +F3 and G = G1 +G2, with F1 = χ′′Jεξ+χJεf̃ , F2 = χ′Jε(bξ),

F3 = χJε(c̃ξ), G1 = χ′Jεξ and G2 = χJε(bξ). Since F,G ∈ C∞c (Ω), we can
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explicitly write u as

u(x) = Γ ∗ (F + ∂G) =

∫
Ω

Γ(x− y)(F (y) + ∂G(y))dy, (4.45)

where Γ(x − y) = 1/(4π|x − y|) is the fundamental solution of Laplace’s equa-

tion. Let Kij = ∂2
ijΓ, which is a Calderon-Zygmund kernel in the usual sense and

therefore satisfies (see, for example, [56], Chapter II)

‖Kij ∗ w‖p ≤ c‖w‖p, (4.46)

where the norms are to be understood as integrals on Ω, here and in the other

local estimates below.

We have Kij∗F1 = ∂2
ij(Γ∗F1), and therefore the standard Poincaré inequality

and (4.46) give

‖Γ ∗ F1‖2,2 ≤ c‖F1‖2 ≤ c‖ξ‖2 + ‖f̃‖2, (4.47)

since Jεξ → ξ and Jεf̃ → f̃ in L2. Similarly we have

‖Γ ∗ F2‖2,3/2 ≤ c‖F2‖3/2 ≤ c‖b‖6‖ξ‖2 ≤ c‖b‖1,2‖ξ‖2, (4.48)

where we have again made use of the weighted Hölder and Sobolev inequalities.

Note that we are not able to directly obtain a W 2,2 estimate for ‖Γ ∗F2‖2,3/2, and

the estimate for ‖Γ ∗ F3‖ below is even weaker. However, we can bootstrap this

up to the required W 2,2 estimate.

Let I1 be the usual Riesz potential on Ω, defined by

I1u(x) =

∫
Ω

u(y)

|x− y|2
dy. (4.49)

The Riesz potential is the inverse of a first order pseudo-differential operator,

and as such it satisfies the following Sobolev-type inequality (see, for example,
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Theorem 23.1 and Proposition 23.3, Chapter VIII of [28]):

‖I1u‖p ≤ c‖u‖q, (4.50)

for 1 < q < n = 3 and 1
p

= 1
q
− 1

3
, or q = 1 and 1 < p < n

n−1
= 3/2. From this,

and noting ∂Γ ∗ u ∼ I1u, we have

‖∂Γ ∗ F3‖p ≤ c‖I1F3‖p ≤ c‖F3‖1 ≤ c‖c̃‖2‖ξ‖2,

for 1 < p < 3/2. Then the standard Poincaré inequality gives us

‖Γ ∗ F3‖s ≤ c‖∂Γ ∗ F3‖p ≤ c‖c̃‖2‖ξ‖2,

for 3/2 < s < 3, where p = 3s
3+s

< 3/2. Now, by making use of the identity,

Γ ∗ ∂G1 = ∂(Γ ∗G1), and the Sobolev and Poincaré inequalities, we have

‖Γ ∗ ∂G1‖6 ≤ c‖∂(Γ ∗G1)‖1,2 ≤ c‖∂2Γ ∗G1‖2 ≤ c‖G1‖2 ≤ c‖ξ‖2.

Similarly, we have

‖Γ ∗ ∂G2‖3 ≤ c‖∂(Γ ∗G2)‖1,3/2 ≤ c‖∂2Γ ∗G2‖3/2

≤ c‖G2‖3/2 ≤ c‖b‖6‖ξ‖2 ≤ c‖b‖1,2‖ξ‖2.

Now that we have a uniform bound on u, independent of ε, we conclude ξ ∈ L3−ε
loc .

This argument can be repeated successively, each time with a stronger estimate

for ξ, until we eventually arrive at ξ ∈ W 2,2
loc . The remainder of the bootstrapping

argument is included as Appendix B, as it is simply a matter of iterating the exact

same estimates used above.

To establish global regularity, we introduce a new smooth cutoff function

χ ∈ C∞c (M) such that χ ≡ 1 on BR0 , for some R0 > 1 and χ = 0 on B2R0 .

Define χR(x) = χ(xR0/R), so that χR has support on B2R. Clearly χξR ∈ W 2,2
−1/2,
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therefore Lemma 4.8 gives

‖χRξ‖2,2,−1/2 ≤C
(
‖DΦ∗g[χRξ]‖2,−5/2 + ‖DΦ∗π[χRξ]‖1,2,−3/2

+ ‖DΦ∗ε[χRξ]‖1,2,−3/2 + ‖ξ‖2,0

)
, (4.51)

since χRξ → ξ in L2
0, and from this we can show that χRξ is uniformly bounded

in W 2,2
−1/2.

Since we have ξ ∈ W 2,2
loc , we can interpret DΦ∗ as a true differential operator

acting on ξ. Also note that ∇̊χR(x) = (R0/R)∇̊χ(xR0/R), ∇̊χ is bounded, and

∇̊χR has support on AR. It follows that we have

‖u∇̊χR‖p,δ ≤ c‖u/R‖p,δ:AR
≤ c sup

x∈AR

|r(x)/R|‖u‖p,δ+1:AR
≤ c‖u‖p,δ+1:AR

.

From this and the usual weighted Sobolev-type inequalities, we have

‖DΦ∗g[χRξ]‖2,−5/2 ≤ c
(
‖χRDΦ∗g[ξ]‖2,2,−1/2 + ‖πξ∇̊χR‖2,−5/2

+ ‖ξ∇̊2χR‖2,−5/2 + ‖∇̊(ξ)∇̊(χR)‖2,−5/2

)
≤ c
(
‖f1‖2,−5/2 + ‖π‖4,−3/2‖ξ‖4,0:AR

+ ‖ξ‖2,−1/2

+ ‖∇̊ξ‖2,−3/2:AR

)
≤ c
(
‖f1‖2,−5/2 + ‖π‖1,2,−3/2‖ξ‖1,2,0:AR

+ ‖ξ‖2,−1/2

+ ‖∇̊ξ‖2,−3/2:AR

)
≤C (‖f1‖2,−5/2 + ‖ξ‖2,−1/2 + ‖∇̊ξ‖2,−3/2:AR

)

≤C (‖f1‖2,−5/2 + ‖ξ‖2,−1/2) + ε‖∇̊2ξ‖2,−5/2:AR
.
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Almost identically, we have

‖∇̊DΦ∗π[χRξ]‖2,−5/2 ≤
(
‖χR∇̊DΦ∗π[ξ]‖2,−5/2 + ‖πξ∇̊χR‖2,−5/2

+ ‖ξ∇̊2χR‖2,−5/2 + ‖∇̊(ξ)∇̊(χR)‖2,−5/2

)
≤C (‖∇̊f3‖2,−5/2 + ‖ξ‖2,−1/2) + ε‖∇̊2ξ‖2,−5/2:AR

.

For the sake of presentation, we now gather terms with the same regularity and

decay rate; we define σ = (ε, ∇̊A,Ak) ∈ W 1,2
−3/2. Then we again have

‖∇̊DΦ∗ε[χRξ]‖2,−5/2 ≤
(
‖χR∇̊DΦ∗ε[ξ]‖2,−5/2 + ‖σξ∇̊χR‖2,−5/2

+ ‖ξ∇̊2χR‖2,−5/2 + ‖∇̊(ξ)∇̊(χR)‖2,−5/2

+ ‖A∇̊(ξ)∇̊(χR)‖2,−5/2

)
≤
(
‖χR∇̊DΦ∗ε[ξ]‖2,−5/2 + ‖σξ∇̊χR‖2,−5/2

+ ‖ξ∇̊2χR‖2,−5/2 + (1 + ‖A‖∞,0)‖∇̊(ξ)∇̊(χR)‖2,−5/2

)
≤C (‖∇̊f4‖2,−5/2 + ‖ξ‖2,−1/2) + ε‖∇̊2ξ‖2,−5/2:AR

.

Inserting the estimates above into (4.51) and applying the weighted Poincaré

inequality, we arrive at

‖∇̊2(χRξ)‖2,−5/2 ≤C
(
‖f1‖2,−5/2 + ‖(f3, f4)‖1,2,−3/2

+ ‖ξ‖2,−1/2 + ε‖∇̊2ξ‖2,−5/2:AR

)
. (4.52)

Unfortunately we are unable to ensure ‖∇̊2ξ‖2,−5/2:AR
. ‖∇̊2(χRξ)‖2,−5/2, so we

can not absorb the last term into the left-hand side of (4.52). However, recalling

Remark 4.9, we apply the local version of Lemma 4.8 to obtain

‖∇̊2ξ‖2,−5/2:AR
≤ C‖f1‖2,−5/2 + ‖(f3, f4)‖1,2,−3/2 + ‖ξ‖2,0. (4.53)
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Finally we obtain the desired uniform bound:

‖χRξ‖2,2,−1/2 ≤ c‖∇̊2(χRξ)‖2,−5/2

≤ C
(
‖f1‖2,−5/2 + ‖(f3, f4)‖1,2,−3/2 + ‖ξ‖2,−1/2

)
. (4.54)

A well-known consequence of the Banach-Alaoglu theorem is that every

bounded sequence in a Hilbert space has a weakly convergent subsequence; it

follows that χRξ converges to ξ weakly in W 2,2
−1/2. In particular, ξ ∈ W 2,2

−1/2 and

satisfies DΦ∗[ξ] = (f1, f2, f3, f4) strongly.

Recall that we wish to prove that DΦ is surjective, so we first establish that

DΦ∗ has trivial kernel. In light of Theorem 4.10, the equation DΦ∗[ξ] = 0 can be

interpreted as a bona fide differential equation. It then follows that the equation

Ψ[ξ] = 0, where Ψ is defined by (4.42), is equivalent to an equation of the form

∇̊2ξ = b1∇ξ + b0ξ, (4.55)

where b0 ∈ L2
−5/2 and b1 ∈ W 1,2

−3/2. This can easily be seen by examining the expres-

sions for ∇̊2N , ∇̊2X and ∇̊2V in the proof of Lemma 4.8. While the statement of

Theorem 3.6 in [11] is only concerned with a particular equation, it is immediately

obvious that the proof holds more generally. In particular, the theorem could be

instead stated as follows:

Theorem 4.11 (Theorem 3.6 of [11]). Let Ω ⊂ M be a connected domain with

E ′R ⊂ Ω for some R, where E ′R is a connected component of ER. If ξ ∈ W 2,2
−1/2

satisfies

∇̊2ξ = b1∇ξ + b0ξ,

with b0 ∈ L2
−5/2 and b1 ∈ W 1,2

−3/2, then ξ ≡ 0 in Ω.

From this and Theorem 4.10, we have the following immediate corollary.
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Corollary 4.12. Let (g, A, π, ε) ∈ F . If ξ ∈ N ∗ satisfies DΦ(g, A, π, ε)∗[ξ] = 0

on M then ξ ≡ 0.

This establishes that DΦ∗(g,A,π,ε) has a trivial kernel for all (g, A, π, ε) ∈ F ;

that is, there are no symmetries of the data which are o(r−1/2) at infinity. Note

that if DΦ∗[ξ] = 0 on M and ξ is o(r−1/2) only on a single end, then Theorem

4.11 implies ξ vanishes on any connected region containing that end and therefore

vanishes on all of M.

4.5 The Constraint Submanifold and Linearisa-

tion Stability

In this Section, we prove the main result of this chapter: the level sets of Φ are

Hilbert submanifolds of F . We then briefly discuss this in relation to the property

of linearisation stability.

In order to proceed, we restrict DΦ to particular variations, (h, b, p, f) ∈

T(g,A,π,ε)F , such that DΦ resembles an elliptic operator (cf. [26]). In particular,

we write (h, b, p, f) = ϕ(y, Y, ψ) as

hij = −1

2
gijy, bai = 0,

pij =
1

2
(∇iY j +∇iY j −∇kY

kgij)
√
g, fai = −∇iψ

a√g.
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Then DΦ[h, b, p, f ] = DΦ[ϕ(y, Y, ψ)] = F [y, Y, ψ] is given by

F [y, Y, ψ] =
∆y
√
g − 1

4
Φ0(g, A, π, ε)y + 1

2
πjj∇jY

j − 2πij∇iYj − 1
4
(E2 +B2)y + εia∂iψ

a ∆Yi
√
g +RijY

j√g +∇j(ψa)(∇̊iA
a
j − ∇̊jA

a
i )
√
g − Aai∆ψa

√
g

−∇j(π
j
i )y − π

j
i ∇̊jy + 1

2
πjj∇̊iy


∆ψa
√
g + Cc

ab∇̊j(ψc)A
b
j

√
g


.

We require the following scale-broken estimate from [9], for operators that

are asymptotic to the Laplacian.

Proposition 4.13. For λ > 0, n < q <∞ and τ ≤ 0, let

Pu = aij(x)∇̊i∇̊ju+ bi(x)∇̊iu+ c̃(x)u

satisfy

λ̊gij(x)vivj < aij(x)vivj < λ−1g̊ij(x)vivj for all x ∈M, v ∈ T ∗xM,

‖a− g̊−1‖1,q,τ + ‖b‖q,τ−1 + ‖c̃‖q/2,τ−2 ≤ C.

If u ∈ Lpδ and Pu ∈ L2
δ−2, with 1 < p ≤ q and δ ∈ R, then u ∈ W 2,p

δ and

satisfies

‖u‖2,p,δ ≤ C(‖Pu‖p,δ−2 + ‖u‖p:BR
), (4.56)

where R is fixed, independent of u, and BR is as defined in Section 4.1

From this we establish a scale-broken estimate for F .

Lemma 4.14. The map, ϕ : W 2,2
−1/2 → T(g,A,π,ε)F , and therefore also the map,

F : W 2,2
−1/2 → L2

−5/2, is a bounded a operator.
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Furthermore, for Y = (y, Y, ψ) ∈ W 2,2
−1/2, F satisfies the scale-broken estimate:

‖Y‖2,2,−1/2 ≤ C(‖F [Y ]‖2,−5/2 + ‖Y‖2,0). (4.57)

Proof. The weighted Hölder and Sobolev inequalities give

‖∇̊2h‖2,−5/2 ≤ c
(
‖g‖∞,0‖∇̊2y‖2,−5/2 + ‖∇̊(g)‖4,−3/2‖∇̊y‖4,−3/2

+ ‖∇̊2g‖2,−5/2‖y‖∞,−1/2

)
≤C ‖y‖2,2,−1/2,

‖∇̊p‖2,−5/2 ≤C
(
‖∇̊2Y ‖2−5/2 + ‖∇̊(g)∇̊Y ‖2,−5/2 + ‖Γ̃∇̊Y ‖2,−5/2

+ ‖Y ∇̊Γ̃‖2,−5/2 + ‖Y Γ̃∇̊g‖2,−5/2

)
≤C

(
‖∇̊2Y ‖2,−5/2 + (‖∇̊g‖4,−3/2 + ‖Γ̃‖4,−3/2)‖∇̊Y ‖4,−3/2

+ ‖Y ‖∞,−1/2(‖∇̊Γ̃‖2,−5/2 + ‖Γ̃‖4,−3/2‖∇̊g‖4.−3/2)
)

≤C ‖Y ‖2,2,−1/2,

‖∇̊ψ‖2,−5/2 ≤ c (‖∇̊2ψ‖2,−5/2 + ‖∇̊ψ‖4,−3/2‖∇̊g‖4,−3/2)

≤C ‖ψ‖2,2,−1/2,

and then by the weighted Poincaré inequality, we have that ϕ is bounded. It

follows immediately that F is also bounded.

Note now, that the Laplace-Beltrami operator clearly satisfies the hypotheses

of Proposition 4.13, with τ = −1
2

and q = 4. It follows that we have the scale-

broken estimate for ∆,

‖u‖2,2,−1/2 ≤ C(‖∆u‖2,−5/2 + ‖u‖2,0). (4.58)

The scale-broken estimate for F is obtained by comparing F to the Laplacian.

We write F [Y ] = (F1, F2, F3), for the sake of presentation, and bound the terms
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separately:

‖∆y‖2,−5/2 ≤ c
(
‖F1‖2,−5/2 + ‖y‖∞,0(‖Φ0‖2,−5/2 + ‖ε2‖2,−5/2 + ‖B2‖2,−5/2)

+ ‖∇Y ‖3,−1‖π‖6,−3/2 + ‖∇̊ψ‖3,−1‖ε‖6,−3/2

)
≤ c
(
‖F1‖2,−5/2 + ‖y‖∞,0(‖Φ0‖2,−5/2 + ‖ε2‖2,−5/2 + ‖B2‖2,−5/2)

+ ‖∇̊Y ‖3,−1‖π‖1,2,−3/2 + ‖Γ̃Y ‖3,−1‖π‖1,2,−3/2 + ‖∇̊ψ‖3,−1‖ε‖1,2,−3/2

)
≤ c
(
‖F1‖2,−5/2 + ‖y‖∞,0(‖Φ0‖2,−5/2 + ‖ε2‖2,−5/2 + ‖B2‖2,−5/2)

+ ‖∇̊Y ‖3,−1‖π‖1,2,−3/2 + ‖∇̊g‖1,2,−1‖Y ‖∞,0‖π‖1,2,−3/2

+ ‖∇̊ψ‖3,−1‖ε‖1,2,−3/2

)
.

The norms of Φ0, ε, B, π and ∇̊g, appearing above, are all finite and can be merged

into the constant, C. Then making use of (4.37) and (4.38), we have

‖∆y‖2,−5/2 ≤ C‖F1‖2,−5/2 + C(ε)‖Y‖1,2,0 + ε‖∇̊2Y‖2,−2, (4.59)

where C(ε) also depends on the point, (g, A, π, ε) ∈ F . We bound ∆ψ and ∆Y

similarly as follows:

‖∆ψ‖2,−5/2 ≤ c (‖F3‖2,−5/2 + ‖∇ψAk‖2,−5/2)

≤ c (‖F3‖2,−5/2 + ‖∇̊ψ‖3,−1‖Ak‖6,−3/2 + ‖Γ̃‖3,−1‖Ak‖6,−3/2‖ψ‖∞,0)

≤ c (‖F3‖2,−5/2 + ‖∇̊ψ‖3,−1‖Ak‖1,2,−3/2

+ ‖∇̊g‖1,2,−3/2‖Ak‖1,2,−3/2‖ψ‖∞,0).

From this we have the following estimate for ∆ψ, almost identical to (4.59):

‖∆ψ‖2,−5/2 ≤ c‖F3‖2,−5/2 + C(ε)‖ψ‖1,2,0 + ε‖∇̊2ψ‖2,−2. (4.60)
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We make use of (4.60) in the following estimate for ∆Y , as F2 contains both ∆Y

and ∆ψ terms:

‖∆Y ‖2,−5/2 ≤ c
(
‖F2‖2,−5/2 + ‖Y‖∞,0(‖Ric‖2,−5/2 + ‖∇π‖2,−5/2)

+ ‖∇̊Y‖3,−1(‖∇̊A‖6,−3/2 + ‖π‖6,−3/2) + ‖A‖∞,0‖∆ψ‖2,−5/2

)
≤ c‖F2‖2,−5/2 + C(‖Y‖∞,0 + ‖∇̊Y‖3,−1 + ‖∆ψ‖2,−5/2). (4.61)

Recall when we defined Φ, we noted that the momentum constraint sometimes is

defined differently. Had we used the alternative definition of Φi, then F2 wouldn’t

contain the term ∆ψ, and we would have F (Y) is exactly ∆Y plus lower order

terms [46]. However, our definition of the momentum constraint is better suited

to the results in Chapter 6.

Now, combining the estimates, (4.59)-(4.61), we conclude

‖∆Y‖2,−5/2 ≤ C‖F [Y ]‖2,−5/2 + C(ε)‖Y‖1,2,0 + ε‖∇̊2Y‖2,−2, (4.62)

for any ε > 0. By inserting this into the scale-broken estimate for ∆ (4.58), we

have

‖Y‖2,2,−1/2 ≤ C‖F [Y ]‖2,−5/2 + C(ε)‖Y‖1,2,0 + ε‖∇̊2Y‖2,−2. (4.63)

The weighted interpolation and Poincaré inequalities then give

‖Y‖2,2,−1/2 ≤ C‖F [Y ]‖2,−5/2 + C(ε)‖Y‖2,0 + ε‖∇̊2Y‖2,−2. (4.64)

Finally, choosing ε sufficiently small, we arrive at the scale-broken estimate for F :

‖Y‖2,2,−1/2 ≤ C(‖F [Y ]‖2,−5/2 + ‖Y‖2,0). (4.65)

We are now in a position to prove the main Theorem of this Chapter.
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Theorem 4.15. For all s ∈ N ∗, the level set

C(s) := {(g, A, π, ε) ∈ F : Φ(g, A, π, ε) = s} (4.66)

is a Hilbert submanifold of F .

Proof. As mentioned in Section 4.4, this is established by demonstrating that

the hypotheses of Theorem 4.7 are satisfied. Since DΦ is bounded and linear,

the kernel is closed and therefore is trivially complementable, due to the Hilbert

structure. We only must prove that DΦ is surjective onto N ∗, and the conclusion

follows.

Since the codomain splits as ran(DΦ)⊕coker(DΦ) and coker(DΦ) ' ker(DΦ∗)

is trivial, all that remains to be shown is that DΦ has closed range; this is where

we make use of the operator F . Clearly ran(F ) ⊂ ran(DΦ), so it will suffice to

prove that ran(F ) is closed and differs from ran(DΦ) by a finite dimensional closed

subspace.

Lemma 4.14 allows us to employ the following standard argument, proving

that F has finite dimensional kernel. Take any sequence Yn ∈ ker(F ) such that

‖Yn‖2,2,−1/2 ≤ 1; a sequence in the closed unit ball in kerF . By the weighted

version of the Rellich compactness theorem (Proposition 3.7), the closed W 2,2
−1/2-

unit ball is compact with respect to the L2
0 topology. It then follows that Yn

has a subsequence that converges in L2
0, but since equation (4.57) implies that

‖Yn − Ym‖2,2,−1/2 ≤ C‖Yn−Ym‖2,0, the subsequence also converges in W 2,2
−1/2. By

the sequential characterisation of compactness, it follows that the closed unit ball

in ker(F ) is compact and thus ker(F ) is finite dimensional.

Since the kernel is closed, we have the decomposition, W 2,2
−1/2 = K ⊕ ker(F ),

where K is some closed subspace. To prove that the range of F is closed, we
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require the following estimate:

‖Y‖2,2,−1/2 ≤ c‖F [Y ]‖2,−5/2 for all Y ∈ K. (4.67)

We prove this by contradiction. If (4.67) were not true then we could find a

sequence Yn ∈ K such that ‖Yn‖2,2,−1/2 = 1 and ‖F [Yn]‖2,−5/2 → 0. Then,

passing to a subsequence again if necessary, the weighted Rellich compactness

theorem implies Yn → Y 6= 0 with respect to the L2
0 topology. Then from (4.57)

we also have convergence with respect to the W 2,2
−1/2 norm. Since K is closed in

W 2,2
−1/2 we conclude 0 6= Y ∈ K ∩ ker(F ), which is a contradiction.

Now take any Cauchy sequence F [Yn] ∈ ran(F ), which necessarily converges

to some Q ∈ L2
−1/2. Then (4.67) implies Yn converges to some Y ∈ W 2,2

−1/2.

Since F is a bounded linear operator, it follows that F [Yn]→ F [Y ] and therefore

Q = F [Y ] ∈ ran(F ); that is, F has closed range.

It remains to be shown that ran(F ) differs from ran(DΦ) by a finite dimen-

sional subspace. Given that we have the splitting

L2
−1/2 = ran(DΦ) = ran(F )⊕ coker(F ),

we show that ker(F ∗) is finite dimensional.

The formal L2 adjoint is given by

F ∗[z, Z, ζ] =
∆z
√
g − 1

4
Φ0(g, A, π, ε)z − 1

4
(E2 +B2)z + πji ∇̊jZ

i − 1
2
∇̊i(π

j
jZ

i)

∆Zj
√
g + 2∇i(π

i
jz)− 1

2
∇j(π

i
iz) +RijZ

i√g ∆ζa
√
g − ∇̊i(zε

i
a)−∆(Zi)Aai

√
g −∇j(Zi)(∇iA

a
j +∇jA

a
i )
√
g

+Cc
ab∇̊j(Abjζc

√
g)− Zi∇j∇iA

a
j

√
g




.
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We define a new operator, F̂ ∗, by adding AajF
∗j
2 to F ∗3 , where F2 and F3 refer to

the second and third components of the operator F , respectively.

F̂ ∗[z, Z, ζ] =
∆z
√
g − 1

4
Φ0(g, A, π, ε)z − 1

4
(E2 +B2)z + πji ∇̊jZ

i − 1
2
∇̊i(π

j
jZ

i)

∆Zj
√
g + 2∇i(π

i
jz)− 1

2
∇j(π

i
iz) +RijZ

i√g ∆ζa
√
g − ∇̊i(zε

i
a) + (2∇i(π

i
jz)− 1

2
∇j(π

i
iz) +RijZ

i√g)Aaj

−∇j(Zi)(∇iA
a
j +∇jA

a
i )
√
g + Cc

ab∇̊j(Abjζc
√
g)− Zi∇j∇iA

a
j

√
g




This new operator is elliptic and clearly has the same kernel as F ∗. Furthermore,

it can be seen that F̂ ∗ satisfies the hypotheses of Proposition 4.13 directly, again

with τ = −1
2

and q = 4. In particular, if F̂ ∗[z, Z, ζ] ∈ L2
−5/2 then we have

(z, Z, ζ) ∈ W 2,2
−1/2 and F̂ ∗ also satisfies the scale-broken estimate,

‖(z, Z, ζ)‖2,2,−1/2 ≤ C(‖F [z, Z, ζ]‖2,−5/2 + ‖(z, Z, ζ)‖2,0). (4.68)

From this, we infer that ker(F ∗) = ker(F̂ ∗) is finite dimensional by the exact same

argument used to prove F has finite dimensional kernel. For the reasons outlined

above, we conclude that DΦ has closed range and therefore the hypotheses of

Theorem 4.7 are satisfied, which completes the proof.

Theorem 4.15 not only provides us with the Hilbert manifold structure re-

quired for the following chapters, but it is also an interesting result in itself. We

have that the Einstein-Yang-Mills, and therefore also the Einstein-Maxwell, con-

straint equations are linearisation stable in the sense of Section 2.4. In the earlier

work of Arms [1, 2], Fischer and Marsden [32], linearisation stability of the full

equations is inferred from the linearisation stability of the constraints.

This conclusion requires that the Cauchy problem is well-posed, which as

mentioned at the end of Section 2.2, is expected to be true in the case considered

here. Then the exact same argument used by Fischer, Marsden and Arms applies,



Chapter 4. The Phase Space for the EYM Equations 54

to obtain linearisation stability of the full equations (see [2, 33]). However, as the

existence and uniqueness results of Klainerman, Rodnianski and Szeftel [44] are

rather technical, and linearisation stability is somewhat tangential to the main

point of this thesis, we will not discuss this any further.



Chapter 5

Mass, Charge and Angular

Momentum
The Higgs boson walks into a church. The priest says

“we don’t allow Higgs bosons in here”.

The Higgs boson says “but without me, how can you

have mass?”

Brian Malow (Science Comedian)

This chapter introduces the usual definitions of energy, momentum and

charge as well as a generalised angular momentum quantity, which is suited to

our purposes. These quantities are then expressed as volume integrals of diver-

gences over the initial data manifold, rather than as surface integrals at infinity.

We prove that these quantities are smooth maps acting on the constraint subman-

ifold; a requirement for the Lagrange multiplier arguments of Chapter 6.

The ADM energy-momentum [5] is the standard definition of energy-momentum

at spatial infinity for asymptotically flat spacetimes. The ADM energy is usually

given by the expression,

E =

∮
∞
∂jgij − ∂igjjdSi, (5.1)

55
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where several things are implicitly understood: the notation
∮
∞ refers to the limit,

limR→∞
∮
SR

, of integrals over large coordinate spheres of radius R, repeated indices

are summed over, and the integral is evaluated using a coordinate system that is

Cartesian at infinity. The coordinate conditions can easily be removed by writing

the expression in terms of the background Euclidean metric as

E :=
1

16π

∮
∞
∇̊jgij − ∇̊i(̊g

jkgjk)dS
i. (5.2)

The linear momentum is a covector at spatial infinity, given by

pi :=
1

8π

∮
∞
πijdS

j, (5.3)

and together these quantities define the energy-momentum covector, (E, pi), on the

spacetime. This definition of momentum motivates the nomenclature, “momentum

constraint”, for (4.14). It has been established by Bartnik that these definitions

are independent of the limiting process [9, 11].

While these definitions do depend on the choice of initial data slice, this is

not in any way problematic, and is in fact to be expected. The energy-momentum

covector is “at infinity”, so may be identified with a 4-vector in Minkowski space-

time. Choosing different initial data slices is akin to choosing different coordinates

for Minkowski spacetime; we can exchange energy for momentum, but the length of

the 4-covector is invariant. Assuming the dominant energy condition, the positive

mass theorem ensures that (E, pi)
] is timelike, where ] denotes the usual musical

isomorphism identifying a covector with a vector. We therefore define the total

mass as m :=
√
E2 − |p|2.

Angular momentum in general relativity is unfortunately somewhat more

complicated than its linear counterpart. Under the assumption of axially symme-

try, we have the advantage of having a rotational Killing vector field, φ, whose



Chapter 5. Mass, Charge and Angular Momentum 57

orbits are 2π-periodic. In this case, the angular momentum is usually given by

J = − 1

8π

∮
∞
φiπijdS

j, (5.4)

which is now a well-established definition. However, in the general case there is

no rotational Killing vector field so this definition does not make sense. There is

a notion of angular momentum, which does make sense more generally, however

it also has limitations. Since there is no preferred direction of rotation, rotational

vector fields are introduced using Cartesian coordinates near infinity and angular

momentum corresponding to “rotations about each coordinate axis” is defined. In

terms of these Cartesian coordinates, define

φx = y∂z − z∂y, φy = z∂x − x∂z, φz = x∂y − y∂x, (5.5)

which are the rotational symmetries of flat space. Then we define the three angular

momenta associated with these symmetries,

J(xi) = − 1

8π

∮
∞
φj(xi)πjkdS

k, (5.6)

where xi = (x, y, z). The main problems with this definition are as follows (cf.

[42]):

1. The integrals (5.6) do not converge in general, so often somewhat unnatural

parity conditions are imposed [50] to ensure convergence.

2. The quantity Ji = (J(x1), J(x2), J(x3)) depends on the coordinate choice in a

non-covariant fashion.

We avoid the problem of convergence by considering a quasilocal notion of angular

momentum. Assume M has multiple asymptotic ends and fix a particular end,

M0, to work on. We then introduce a closed 2-surface boundary, Σ, such that

M\Σ comprises of two disconnected components, one of which contains M0. The
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surface, Σ, will later play the role of the horizon in the first law. The component

of M containing M0 will be denoted by M0.

Note that in the vacuum axially symmetric case, we have ∇iπij = 0, and

therefore ∇i(φjπij) = πij∇(iφj) + φj∇iπij = 0 since φ is Killing. In particular, the

divergence theorem gives

J = − 1

8π

∮
∞
φiπijdS

j = − 1

8π

∮
Σ

φiπijdS
j. (5.7)

Throughout, dSi will refer to the surface element whose associated normal points

in the direction of infinity in M0.

Equation (5.7) motivates our quasilocal generalised definition of angular mo-

mentum1. For some vector field χ, defined locally near Σ, we define the generalised

χ-angular momentum:

J̃0
χ = − 1

8π

∮
Σ

χiπji dSj. (5.8)

Note that this definition agrees with the usual definition when χ is the axial Killing

vector, however J̃0
χ is well-defined on the entire phase space.

Since we are dealing with the Einstein-Yang-Mills equations, we also would

like to include a term corresponding to the angular momentum of the Yang-Mills

fields. In this case the χ-angular momentum becomes

J̃χ = − 1

16π

∮
Σ

(
2χiπji − εjaAaiχi

)
dSj. (5.9)

The term corresponding to the angular momentum of the Yang-Mills fields ap-

pears to have first been considered in [57]. Clearly this definition is not useful for

describing angular momentum when χ is permitted to be an arbitrary vector field,

however we will later impose conditions on χ in order to ensure that this quantity

better describes some notion of angular momentum.

1While this is useful for our purposes, we do not argue here that this gives a suitable quasilocal
definition of angular momentum in general. There is a great deal of literature on the problem
of quasilocal mass and angular momentum (see [58] and references therein).
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We next introduce the definition of Yang-Mills charge. The total charge is

usually given by

Q∞ a =

∮
∞
∗Fa, (5.10)

where ∗F is the spacetime Hodge dual of the field strength 2-form. It is more

conveniently expressed in terms of the initial data as

Q∞ a =
1

4π

∮
∞
Ei
adSi. (5.11)

In the Maxwell electrovac case this integral can be pushed onto Σ, as was done

with the angular momentum, since ∇iE
i = 0. However in the source-free Yang-

Mills case, ∇iE
i
a does not vanish and in fact is equal to [E,A]a, so the integral

over Σ differs from that at infinity. This may be interpreted as the total charge of

a black hole spacetime differing from the charge of the black hole itself. That is,

the charge is not necessarily from a singularity and in fact, the field itself may be

charged2. This leads us to consider a quasilocal charge defined analogously:

QΣ a =
1

4π

∮
Σ

Ei
adSi. (5.12)

It is straightforward to show that these quasilocal quantities are smooth

maps on F .

Proposition 5.1. For χ ∈ L∞(Σ), the maps QΣ : F → g∗ and J̃0
χ, J̃χ : F → R

are smooth.

Proof. By considering any function ϕ ∈ C∞c (M) with ϕ ≡ 1 on Σ, the Sobolev

trace theorem gives

|QΣ| ≤ c‖E‖L1(Σ) = ‖ϕE‖L1(Σ) ≤ c‖ϕE‖L2(Σ) ≤ c‖E‖1,2,−3/2. (5.13)

2The fact that the field itself may be charged is related to the terminology “self-interacting”,
used by physicists to describe non-commutative gauge theories.
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We can estimate J̃0
χ and J̃χ similarly:

J̃0
χ ≤ c‖χ‖L2(Σ)‖ϕπ‖L2(Σ) ≤ c‖χ‖L2(Σ)‖π‖1,2,−3/2,

J̃χ ≤ c(‖χ‖L2(Σ)‖π‖1,2,−3/2 + ‖χ‖L∞(Σ)‖ϕA‖L2(Σ)‖ϕε‖L2(Σ))

≤ c‖χ‖L∞(Σ)(‖π‖1,2,−3/2 + ‖A‖1,2,−1/2‖ε‖1,2,−3/2).

Since QΣ, J̃
0
χ, J̃χ are bounded and linear, smoothness follows.

It will be convenient to rewrite the surface integrals at infinity as integrals of

total divergences over the whole manifold. For this, we will consider two different

cases for the initial data manifold:

(a) M is an asymptotically flat manifold with a one asymptotic end and no interior

boundaries.

(b) M0 is an asymptotically flat manifold with one asymptotic end and a closed

interior boundary surface, Σ.

The restriction to a single end in case (a) is primarily for the sake of presenta-

tion. The reader may note that permitting multiple ends makes only the most

superficial difference to the analysis and will only be significant in the interpreta-

tion of Theorem 6.6 and Corollary 6.7. We briefly discuss the case where many

asymptotic ends are present in Section 6.4.

In case (a), the integral of a divergence will only give the surface integrals

at infinity; however, in case (b), we obtain integrals on Σ corresponding to the

quasilocal quantities. In both cases, the energy, momentum and charge at infinity

are smooth functions on the constraint submanifolds, however the proof is slightly

different in each case.
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Let ξµ∞ ∈ R3+1 be identified with some timelike vector, corresponding to the

tangent of the worldline of an observer at infinity, and let ξa∞ ∈ g correspond to the

asymptotic value of the electric potential. A total measure of the energy viewed

by this observer is then given by ξ∞ · (E, pi, Qa), which will be more convenient to

work with than (E, pi, Qa). In order to write this as the integral of a divergence,

we need to make sense of extending ξ∞ to a section of P , the principal G-bundle.

Near infinity, ξ∞ ∈ R3,1 ⊕ g may be identified with some smooth section,

ξ̃∞ ∈ C∞(Λ0(M)× TM× g⊗ Λ0(M)), such that ∇̊ξ̃∞ = 0. We then say a

smooth section, ξ̂∞ ∈ C∞(Λ0(M) × TM× g ⊗ Λ0(M)), is a constant transla-

tion near infinity representing ξ∞ if ξ̂∞ = ξ̃∞ on E2R and vanishes on BR, for

some R. While a representation of ξ∞ is not unique, two distinct representations

differ only by an element of C∞c (Λ0(M)×TM×g⊗Λ0(M)) ⊂ W k,p
δ . In particular,

the spaces

Lpξ∞ := {ξ : ξ − ξ̂∞ ∈ Lp−1/2(Λ0(M)× TM× g⊗ Λ0(M))}, (5.14)

W k,p
ξ∞

:= {ξ : ξ − ξ̂∞ ∈ W k,p
−1/2(Λ0(M)× TM× g⊗ Λ0(M))}, (5.15)

of asymptotic translations are well-defined.

We now define a quantity P, in terms of its pairing with ξ∞, which will allow

us to write (E, pi, Qa) as integrals of divergences over M:

16πξ0
∞P0(g) =

∫
M

(
ξ0

ref (̊g
kig̊jl∇̊k∇̊lgij − ∆̊tr̊gg)

+ g̊kig̊jl∇̊kξ
0
ref(∇̊lgij − ∇̊i̊gjl)

)√
g̊, (5.16)

16πξi∞Pi(π) = 2

∫
M

(
ξ̂i∞∇̊jπ

j
i + πji ∇̊j ξ̂

i
∞

)
, (5.17)

16πξa∞Pa(ε) = 4

∫
M

(
ξ̂a∞∇̊iE

i
a + Ei

a∇̊iξ̂
a
∞

)
. (5.18)

Note that these definitions are independent of the choice of representation ξ̂∞, as

a change of ξ̂∞ corresponds to changing the integrands by a total divergence with
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compact support. We may identify Pα = (P0,Pi,Pa) with the asymptotic value of

a section of TP .

The smoothness of P0 and Pi has previously been established by Bartnik

[11]; however, for completeness we include a proof of this with the proof that Pa

is smooth. Part of the proof involves establishing the following estimate, which is

included separately as it will also be useful for the proof of Theorem 6.3 in the

next chapter.

Lemma 5.2. Suppose g ∈ G+
λ for some λ > 0, then

‖R− (∇̊i∇̊jgij − ∆̊tr̊gg)‖1,−3 ≤ c(λ)(1 + ‖g − g̊‖2
2,2,−1/2). (5.19)

Proof. Simply note that the difference R− (∇̊i∇̊jgij − ∆̊tr̊gg) has the form

R̊ + (g − g̊)−1(Ric(g) + g−1∇̊2g) + (g−1)3(∇̊g)2;

the full expression can be seen in Appendix A. We then have

‖R− (∇̊i∇̊jgij − ∆̊tr̊gg)‖1,−3 ≤ c(λ)
(
‖R̊‖1,−3 + ‖g − g̊‖2,−1/2‖Ric‖2,−5/2

+ ‖g − g̊‖2,−1/2‖∇̊2g‖2,−5/2 + ‖(∇̊g)2‖2,−3

)
≤ c(λ)

(
1 + ‖g − g̊‖2

2,2,−1/2

)
,

where we have made use of Proposition 4.2.

Theorem 5.3. If s ∈ L1 and ξ ∈ L∞, then P : C(s)→ R3,1 ⊕ g is a smooth map.

Proof. Note that L1 = L1
−3 and L∞ = L∞0 . Since P is linear in (g, A, π, ε), it

suffices to prove that it is locally bounded, as in the proof of Theorem 4.6. We

again consider g ∈ G+
λ for some λ > 0, and prove that ξ · P is locally bounded for

arbitrary ξ ∈ R3+1 ⊕ g.

Note that ∇̊ξ̂ has compact support, so the second term of both equations

(5.17) and (5.18), and the third and fourth terms in (5.16) are all clearly bound.
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From Lemma 5.2, it can be seen that the dominant part of the remaining terms in

(5.16) agree with the scalar curvature of g, which can be shown to be integrable

from the assumption s ∈ L1. First note

‖ξ̂0
∞(∇̊i∇̊jgij − ∆̊tr̊gg)‖1,−3 ≤ ‖ξ̂0

∞‖∞,0‖∇̊i∇̊jgij − ∆̊tr̊gg)‖1,−3,

then from Lemma 5.2 we have

‖∇̊i∇̊jgij − ∆̊tr̊gg)‖1,−3 ≤ c(λ)(1 + ‖g − g̊‖2
2,2,−1/2) + ‖R‖1,−3.

From the Hamiltonian constraint (4.13), we have

‖R‖1,−3 ≤ c(λ)(‖s‖1,−3 + ‖π2‖1,−3) ≤ c(λ)(‖s‖3,−1 + ‖π‖2
1,2,−3/2).

Putting all of this together, we conclude that ξ0
∞P0 is locally bounded.

The first term in (5.17) is estimated by the momentum constraint (4.14) and

again makes use of the condition s ∈ L1. We have

‖ξi∞∇jπ
j
i ‖1,−3 ≤ c‖ξ∞‖∞,0(‖s‖1,−3 + ‖ε∇̊A‖1,−3 + ‖A∇̊ε‖1,−3)

≤ c‖ξ∞‖∞,0(‖s‖1,−3 + ‖ε‖2,−3/2‖∇̊A‖2,−3/2 + ‖A‖2,−1/2‖∇̊ε‖2,−5/2)

≤ c‖ξ∞‖∞,0(‖s‖1,−3 + ‖ε‖1,2,−3/2‖A‖1,2,−1/2),

and then we have

‖ξi∞∇̊jπ
j
i ‖1,−3 ≤ ‖ξi∞∇jπ

j
i ‖1,−3 + ‖ξ̂∞‖∞,0‖Γ̃π‖1,−3

≤ ‖ξi∞∇jπ
j
i ‖1,−3 + c(λ)‖ξ̂∞‖∞,0(1 + ‖∇̊g‖2

1,2−3/2)‖π‖2,−3/2,

where we have made use of Proposition 4.4.
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Finally, the remaining term in (5.18) is estimated similarly:

‖ξ̂a∞∇̊iE
i
a‖1,−3 ≤‖ξ̂a‖∞,0‖∇̊iE

i
a‖1,−3

≤c‖ξ̂a‖∞,0(‖s‖1,−3 + ‖[E,A]‖1,−3)

≤c‖ξ̂a‖∞,0(‖s‖1,−3 + ‖E‖2,−3/2‖Ak‖2,−3/2).

It follows that P is smooth.

Note that the above theorem is valid in both cases, (a) and (b), as the

weighted Hölder and Sobolev inequalities are valid onM0 (Remark 3.5). However,

in case (b) we are unable to directly identify P with (E, pi, Qa). We next seek to

construct similar volume integrals to represent the physical quantities in case (b).

Let ξ̂Σ ∈ C∞(Λ0 × TM× g ⊗ Λ0) be supported on a neighbourhood of Σ,

and define ξ̂ref := ξ̂∞ + ξ̂Σ. This permits us to prescribe values of ξ̂ref both near

infinity and on Σ. Analogously to the spaces W k,p
ξ∞

, we define

Lp
ξ̂ref

: =
{
ξ : ξ − ξ̂ref ∈ Lp−1/2

(
Λ0(M0)× TM0 × g⊗ Λ0(M0)

)}
, (5.20)

W k,p

ξ̂ref
: =

{
ξ : ξ − ξ̂ref ∈ W̊ k,p

−1/2

(
Λ0(M0)× TM0 × g⊗ Λ0(M0)

)}
, (5.21)

recalling that the notation, W̊ k,p
−1/2, refers to the completion of C∞c with respect to

the W k,p
−1/2 norm. The W k,p

ξ̂ref
spaces then include our prescribed asymptotics and

boundary conditions in the trace sense, while the Lp
ξ̂ref

spaces only include the

asymptotics.

Non-zero values of ξ̂Σ mean that we can no longer write the surface integrals

at infinity as volume integrals of total divergences, as we will also have contribu-

tions on Σ. We are only interested in the case when ξ̂0
Σ = 0, and in this case we
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write

16πξ0
∞P′0(g) =

∫
M0

(
ξ0

ref (̊g
kig̊jl∇̊k∇̊lgij − ∆̊tr̊gg)

+ g̊kig̊jl∇̊kξ
0
ref(∇̊lgij − ∇̊i̊gjl)

)√
g̊, (5.22)

16πξi∞P′i(π) =

∫
M0

(
2ξiref∇̊jπ

j
i + 2πji ∇̊jξ

i
ref + ∇̊i(ε

i
aA

a
j )ξ

j
ref + εiaA

a
j ∇̊iξ

j
ref

)
+

∮
Σ

(
2ξ̂irefπ

j
i − εjaAai ξ̂iref

)
dSj, (5.23)

16πξa∞P′a(ε) = 4

∫
M0

(
ξ̂a∞∇̊iE

i
a + Ei

a∇̊iξ̂
a
∞

)
− 4

∮
Σ

ξ̂arefE
i
adSi. (5.24)

While (5.23) contains the terms (g, A, ε), the quantity P′i only depends on π. This

can be seen by using the divergence theorem to write the bulk integral as surface

integrals at infinity and on Σ, and then noting that the terms on Σ cancel. The

terms at infinity correspond to the ADM momentum, and some Yang-Mills terms

that can be shown to vanish by Proposition 3.8:

‖εAξ̂ref‖L1(SR) ≤cR1/2‖ξ̂ref‖∞:SR
‖A‖∞:SR

‖ε‖1,2,−3/2:AR

≤R1/2o(R−1/2)‖ε‖1,2,−3/2,

which goes to zero as R goes to infinity. In fact, provided the boundary integrals

at infinity arising from the divergence theorem are well-defined, then P′ agrees

with P and (E, pi, V ) (Theorem 5.6).

Note that the surface integral on Σ in (5.23) corresponds exactly to J̃ξ̂ref ,

and if ξ̂aref = ξaΣ ∈ g is constant on Σ, then the surface integral in (5.24) corre-

sponds exactly to ξaΣQΣ a. We therefore have the following immediate corollary of

Proposition 5.1 and Theorem 5.3.

Corollary 5.4. If s ∈ L1, ξ̂aref = ξaΣ ∈ g is constant and ξ ∈ W 2,2

ξ̂ref
, then

P′ : C(s)→ R3,1 ⊕ g is a smooth map.

We now show that the the definitions of P and P′ indeed agree with the
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associated surface integrals at infinity. For this, we employ the following Lemma

from [11]:

Lemma 5.5 (Lemma 4.3 from [11]). Suppose M =
⋃
k≥Mk is an exhaustion of

a non-compact n-dimensional manifoldM by compact subsets with smooth bound-

aries ∂Mk and suppose β ∈ W 1,2
loc (Λn−1(M)) satisfies dβ ∈ L1(Λn(M)). Then

∮
∂M∞

β := lim
k→∞

∮
∂Mk

β exists.

Theorem 5.6. Suppose (g, A, π, ε) ∈ C(s), s ∈ L1, then the surface integrals at

infinity giving (E, p, V ) are well-defined and we have (E, p, V ) = P = P′.

Proof. The integrands in (5.16)-(5.18) have been shown to be L1 by Theorem 5.3,

and the related surface integrands are clearly seen to be W 1,2
loc . In light of both the

discussion above and Lemma 5.5, the equivalence is clear.



Chapter 6

The First Law of Black Hole

Mechanics as a Condition for

Stationarity
It seems plain and self-evident, yet it needs to be said:

the isolated knowledge obtained by a group of specialists

in a narrow field has in itself no value whatsoever, but

only in its synthesis with all the rest of knowledge and

only inasmuch as it really contributes in this synthesis

toward answering the demand, “Who are we?”.

Erwin Schrödinger

We are now in a position to discuss the relationship between the first law

of black hole mechanics and stationary initial data. It is mentioned in the intro-

duction, that this relationship was considered by Sudarsky and Wald in 1992 [57],

however a rigorous proof was not established. We consider separately, the cases

(a) and (b) of Chapter 5, in Sections 6.2 and 6.3 respectively. In both cases, the

differential relationship given by the first law is shown to give a condition for sta-

tionarity. In case (b), we also give evidence suggesting that the boundary surface

is indeed a horizon if the first law holds there. In fact, if the first law holds and

the solution is axially symmetric, then we conclude that the boundary surface is

the bifurcation surface of a bifurcate Killing horizon.

67
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In case (a), when there is no interior boundary, the condition for stationarity

is given by

dm+ V · dQ = 0, (6.1)

where m is the mass, V is the Yang-Mills electric potential and Q is the Yang-Mills

electric charge measured at infinity. Note that the condition (6.1) is not exactly

the first law, it is however related. If we restrict ourselves to trivial topology1 and

since we consider only a single end, then there will be no horizon and therefore no

black hole area, charge or angular momentum. However we argue that the electric

charge at infinity should also be considered and will have the opposite sign to the

usual expression for the first law, where the electric charge is considered at the

horizon.

In the pure Einstein case, this condition further reduces to dm = 0; station-

ary solutions are equated with critical points of the mass. This was first argued

non-rigorously by Brill, Deser and Fadeev [17] in 1968 and rigorously established

by Bartnik in 2005 [11], as critical points of the ADM mass relate to the Bartnik

quasilocal mass [10]. For this reason, we follow the ideas of Bartnik to establish

it the cases presented here.

In both cases, we need to modify the usual ADM Hamiltonian, so we first

digress briefly to discuss Hamiltonians in general relativity.

6.1 Hamiltonians

Before considering the Hamiltonian for the Einstein-Yang-Mills equations, we first

examine the usual ADM Hamiltonian for general relativity. Recall now, the Ein-

stein constraints, evolution equations and canonical Hamiltonian variables from

1Recently Klinkhamer [45] has given nonsingular vacuum and electrovac black hole solutions,
which are Schwarzschild and Reissner Nördstrom respectively, outside the horizon. Rather than
a singularity, the manifold has unusual topology inside the horizon, however it is not clear exactly
what role these solutions play in this picture.
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Section 2.1. The ADM Hamiltonian, from which these equations can be derived,

is given by

H(N,X)
ADM (g, π) = −

∫
M

Φ̃(g, π) · (N,X), (6.2)

where Φ̃(g, π) = (Φ0(g, 0, π, 0),Φi(g, 0, π, 0)) is the constraint map in the pure

gravity case. The superscript (N,X) indicates the Hamiltonian’s dependence on

(N,X), however we will generally consider this to be fixed. Notice that the Hamil-

tonian vanishes when the constraints are satisfied; as such, this is sometimes called

the pure constraint form of the Hamiltonian. The variational derivative of the

Hamiltonian density is then simply

DH
(N,X)
(g,π) [h, p] = −(N,X) ·DΦ̃(g,π)[h, p]. (6.3)

Formally integrating by parts gives

DH
(N,X)
(g,π) = −DΦ̃∗(g,π)[N,X]. (6.4)

Hamilton’s equations then give the correct evolution equations:

∂

∂t

g
π

 = −J ◦DΦ̃∗(g,π)[N,X], (6.5)

where

J =

 0 1

−1 0

 (6.6)

and t is the flow parameter of (N,X), interpreted as a timelike four-vector field

in the full spacetime. This can be seen by comparing Hamilton’s equations, (6.4,

6.5), with the Einstein evolution equations, (2.4, 2.5). The four-vector, (N,X), is

to be interpreted as the lapse-shift vector from Section 2.1.

Equation (6.5) motivates a result by Moncrief, equating non-trivial (N,X) in

the kernel ofDΦ̃(g,π), with Killing vectors in the full spacetime [48]. IfDΦ̃∗(g,π)[N,X] = 0,
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for some (N,X) that corresponds to a vector field in the spacetime that is time-

like at infinity, then we say (g, π) is a stationary initial data set for the Einstein

equations.

In the asymptotically flat case, the integration by parts above will result in

a surface integral at infinity that does not vanish in general. This surface term

corresponds to the variational derivative of the ADM mass, so in order to generate

the correct equations of motion, the mass is added to the Hamiltonian. This was

established by Regge and Teitelboim [50] and the modified Hamiltonian now bears

their names. We will discuss the Regge-Teitelboim Hamiltonian in more detail in

the subsequent sections.

Now we move to discuss the the Hamiltonian for the coupled system, which

behaves analogously. Above, the lapse and shift act as the Lagrange multipliers

corresponding to the Hamiltonian and momentum constraints respectively. In the

coupled system, the electric potential is the Lagrange multiplier for the Gauss

constraint, and the pure constraint form of the Einstein-Yang-Mills Hamiltonian

is given by

Hξ
EYM(g, A, π, ε) = −

∫
M

Φ(g, A, π, ε) · ξ. (6.7)

Differentiating the Hamiltonian density and formally integrating by parts reveals

that Hamilton’s equations again give the correct equations of motion:

∂

∂t


g

A

π

ε


= −J ◦DΦ∗(g,A,π,ε)[ξ], (6.8)
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where

J =

 0 Id

−Id 0

 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


. (6.9)

The evolution equations for (g, π) now include the Yang-Mills stress energy tensor

and the two additional equations give the evolution of (A, ε) (cf. (2.15), (2.16)).

Where previously t was the flow parameter for a vector field on 4V , here it is

the flow parameter of a vector field on the bundle, P . That is, the evolution is

interpreted as a simultaneous time evolution and continuous gauge transformation.

As above, if DΦ∗[ξ] = 0 with (N,X) timelike at infinity, then we say

(g, A, π, ε) is a stationary initial data set for the Einstein-Yang-Mills equations.

In this case, V corresponds to a gauge choice that ensures ∂E
∂t

= 0 = ∂A
∂t

. The

pure constraint Einstein-Yang-Mills Hamiltonian also requires a modification to

cancel out the boundary terms arising from the integration by parts, and therefore

give the correct equations of motion. However, we will reserve discussion on this

modification until the next Section.

6.2 Without an Interior Boundary

This Section considers case (a) of the preceding Chapter, where M has a single

asymptotic end and no interior boundary. For this, we directly make use of the

definitions and constructions of Chapter 4.

We begin by establishing that the pure constraint Einstein-Yang-Mills Hamil-

tonian is a smooth map on the phase space.

Proposition 6.1. The map HEYM : F × N ∗ → R is smooth in the sense of

Fréchet differentiability.
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Proof. Smoothness with respect to (g, A, π, ε) follows directly from the smoothness

of Φ (Theorem 4.6). By the weighted Hölder’s inequality,

|Hξ
EYM(g, A, π, ε)| = ‖ξ · Φ‖1,−3 ≤ ‖ξ‖2,−1/2‖Φ‖2,−5/2, (6.10)

and since HEYM is bounded and linear in ξ, smoothness follows.

We will now prove that the formal adjoint of the linearised constraint map

is indeed equal to the true adjoint for ξ ∈ W 2,2
−1/2. That is, if the evolution vector

vanishes at infinity, then HEYM gives the correct equations of motion. However as

mentioned above, this is not the case when we permit ξ to be a constant translation

near infinity.

Theorem 6.2. Suppose ξ ∈ W 2,2
−1/2, then

DHξ
EYM · (h, b, p, f) = −

∫
M
DΦ∗[ξ] · (h, b, p, f), (6.11)

for all (h, b, p, f) ∈ T(g,A,π,ε)F .

Proof. To arrive at the expression for DΦ∗, boundary terms arising from integra-

tion by parts were disregarded. To establish (6.11), we must demonstrate that

these boundary terms at infinity do indeed vanish. We consider the difference be-

tween ξ ·DΦ[h, b, p, f ] and (h, b, p, f)·DΦ∗[ξ] (see (4.20)-(4.26)), and after canceling

out common terms, we arrive at the following expression:

(h, b, p, f) ·DΦ∗[ξ]− ξ ·DΦ[h, b, p, f ] = (6.12)

∇i
(

(N(∇̊itrgh−∇jhij) + ∇̊j(N)hij − trgh∇̊i(N))
√
g − 2Xjpij + V afai

)
−∇i

(
2πki hjkX

j − πjkhjkXi + εijkb
akBj

aN
√
g + εiab

a
jX

j −Xiε
j
ab
a
j + faiX

jAaj

)
.

The boundary terms have been expressed as two separate divergences, correspond-

ing to their decay rates at infinity — a distinction that will be important later.
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For the sake of presentation, we define

B1
i = (N(∇̊itrgh−∇jhij) + ∇̊j(N)hij − trgh∇̊i(N))

√
g − 2Xjpij + V afai,

B2
i = 2πki hjkX

j − πjkhjkXi + εijkb
akBj

aN
√
g + εiab

a
jX

j −Xiε
j
ab
a
j + faiX

jAaj ,

so that (6.12) can now be written as

(h, b, p, f) ·DΦ∗[ξ]− ξ ·DΦ[h, b, p, f ] = ∇iB1
i +∇iB2

i . (6.13)

The boundary terms at infinity are then given by limR→∞
∮
SR

(B1
i + B2

i )dS
i,

so we must show that this vanishes to complete the proof. First, we demonstrate

that these surface integrals are well-defined in the trace sense, and the limit as

R tends to infinity is also well-defined. In order to do this, we show that the

hypotheses of Lemma 5.5 are satisfied. By construction, each of (h, b, p, f) ·DΦ∗[ξ]

and ξ·DΦ[h, b, p, f ] are integrable, so all that remains to be shown is B1,B2 ∈ W 1,2
loc .

The weighted Poincaré inequality gives

‖B1‖1,2,−2 ≤ c‖∇̊B1‖2,−3,

‖B2‖1,2,−2 ≤ c‖∇̊B2‖2,−3,

and the usual weighted Sobolev-type inequalities are used below to obtain the

required estimates. Recall that g is Hölder continuous and bounded on M, so we

need not consider the raising and lowering of indices in the estimates to follow.
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The usual weighted inequalities give

‖∇̊B1‖2,−3 ≤ c
(
‖∇̊N‖4,−3/2‖∇̊h‖4,−3/2 + ‖N‖∞,−1/2‖∇̊2h‖2,−5/2

+ ‖∇̊X‖4,−3/2‖p‖4,−3/2 + ‖X‖∞,−1/2‖∇̊p‖2,−5/2

+ ‖∇̊f‖2,−5/2‖V ‖∞,−1/2 + ‖∇̊V ‖4,−3/2‖f‖4,−3/2

+ ‖∇̊2N‖2,−5/2‖h‖∞,−1/2

)
≤ c
(
‖∇̊N‖1,2,−3/2‖∇̊h‖1,2,−3/2 + ‖N‖2,2,−1/2‖∇̊2h‖2,−5/2

+ ‖∇̊X‖1,2,−3/2‖p‖1,2,−3/2 + ‖X‖2,2,−1/2‖∇̊p‖2,−5/2

+ ‖∇̊f‖2,−5/2‖V ‖2,2,−1/2 + ‖∇̊V ‖1,2,−3/2‖f‖1,2,−3/2

+ ‖∇̊2N‖2,−5/2‖h‖2,2,−1/2

)
≤ c‖ξ‖2,2,−1/2

(
‖h‖2,2,−1/2 + ‖p‖1,2,−3/2 + ‖f‖1,2,−3/2

)
.

For the sake of presentation, we again group terms with the same regularity and

decay rate; we define α = (h, b, A) ∈ W 2,2
−1/2 and β = (π,B, ε, f) ∈ W 1,2

−3/2. We

can then write B2 as the collection of terms B2 ∼ αβξ and the estimate can be

concisely written as follows:

‖∇̊B2‖2,−3 ≤ c
(
‖αβ∇̊ξ‖2,−3 + ‖ξα∇̊β‖2,−3 + ‖βξ∇̊α‖2,−3

)
≤ c
(
‖α‖∞,−1/2‖β‖4,−3/2‖∇̊ξ‖4,−1 + ‖ξ‖∞,0‖α‖∞,−1/2‖∇̊β‖2,−5/2

+ ‖β‖4,−3/2‖ξ‖∞,0‖∇̊α‖4,−3/2

)
≤ c
(
‖α‖2,2,−1/2‖β‖1,2,−3/2‖∇̊ξ‖1,2,−1 + ‖ξ‖2,2,0‖α‖2,2,−1/2‖∇̊β‖2,−5/2

+ ‖β‖1,2,−3/2‖ξ‖2,2,0‖∇̊α‖1,2,−3/2

)
≤ c‖α‖2,2,−1/2‖β‖1,2,−3/2‖ξ‖2,2,0.

Since we have B1,B2 ∈ W 1,2
loc , Lemma 5.5 tells us that the surface integrals at

infinity are well-defined.
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We again make use of the usual weighted Sobolev-type inequalities and

Proposition 3.8 to obtain estimates on SR:

∮
SR

B1
i dS

i ≤ c
(
‖ξ‖∞:SR

(‖∇̊h‖1:SR
+ ‖p‖1:SR

+ ‖f‖1:SR
) + ‖h‖∞:SR

‖∇̊N‖1:SR

)
≤ cR1/2o(R−1/2)(‖∇̊h‖1,2,−3/2 + ‖p‖1,2,−3/2 + ‖f‖1,2,−3/2 + ‖∇̊N‖1,2,−3/2)

= o(1),

where o(1) here refers to the asymptotic behaviour as R→∞. Note that we have

made use of the Hölder continuity of ξ obtained by the Morrey-Sobolev embedding,

C0,1/2 ⊂ W 2,2, to write ‖ξ‖∞:SR
= o(R−1/2) for ξ ∈ W 2,2

−1/2. Similarly, we obtain

∮
SR

B2
i dS

i ≤ c‖α‖∞:SR
‖ξ‖∞:SR

‖β‖1:SR

≤ o(1)‖ξ‖∞:SR
‖β‖1,2,−3/2

= o(R−1/2).

It follows that the boundary terms at infinity vanish and therefore we have

∫
M
ξ ·DΦ[h, b, p, f ] =

∫
M

(h, b, p, f) ·DΦ∗[ξ].

Note that the difference in the decay rates of B1 and B2 at infinity are evident

in the above estimates; to ensure limR→∞
∮
SR
B1
i dS

i = 0, we require ξ = o(r−1/2),

however we only need ξ to be bounded to ensure limR→∞
∮
SR
B2
i dS

i = 0.

Recall that ξ will correspond to a time evolution vector field, so we would

like the four-vector component to be asymptotic to a constant timelike vector in

4V . In which case, the boundary terms from B2 still vanish, but those from B1

are not even necessarily finite. However, when they are finite these terms do have

an important physical interpretation. The boundary terms from B1 correspond to
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the first variation of the ADM energy-momentum and electric charge. Not only

are these boundary terms non-vanishing when ξ is permitted to be an asymptotic

translation, but the Hamiltonian itself is no longer well defined. The condition

that ξ = o(r−1/2) is required to ensure that the integral in (6.7) is convergent.

This motivates the introduction of a new Hamiltonian à la Regge-Teitelboim.

For ξ ∈ L2
ξ∞

, an asymptotic translation (see (5.14)), we define

Hξ
RT (g, A, π, ε) := 16πξ∞ · P(g, A, π, ε)−

∫
M
ξ · Φ(g, A, π, ε), (6.14)

where P is defined by (5.16) - (5.18). When the source-free constraints are satis-

fied, this Hamiltonian is identically 16πξ∞ · P(g, A, π, ε) and therefore gives some

notion of a total energy for the system. While neither of the terms in (6.14) are

well-defined on the entire phase space, it will be shown that when we combine

these integrals the dominant terms cancel out, and the resulting expression is

well-defined on all of F . Writing (6.14) as an integral over M, we arrive at the

regularised Hamiltonian:

Hξ(g, A, π, ε) =

∫
M

(ξ̂∞ − ξ) · Φ +

∫
M
ξ̂0
∞
(̊
gikg̊jl(∇̊k∇̊lgij − ∇̊i∇̊k(gjl)

√
g̊)− Φ0

)
+

∫
M
g̊ikg̊jl∇̊kξ̂

0
∞(∇̊lgij − ∇̊igjl)

√
g̊ +

∫
M
ξ̂i∞(2∇̊jπ

j
i − Φi) (6.15)

+

∫
M

2πji ∇̊j ξ̂
i
∞ +

∫
M
ξ̂a∞(4∇̊iE

i
a − Φa) + 4

∫
M
Ei
a∇̊iξ̂

a
∞.

The regularised Hamiltonian has been expressed as seven separate integrals, as

each of these integrals can be shown to converge independently.

Theorem 6.3. The regularised Hamiltonian, defined by (6.15), is a smooth func-

tional on F × L2
ξ∞

. Furthermore, if ξ ∈ W 2,2
ξ∞

then for all (g, A, π, ε) ∈ F and

(h, b, p, f) ∈ T(g,A,π,ε)F , we have

DHξ[h, b, p, f ] = −
∫
M

(h, b, p, f) ·DΦ∗[ξ]. (6.16)
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That is, the regularised Hamiltonian gives the correct equations of motion (cf. 6.8).

Proof. Again, we simply must show that the Hamiltonian is locally bounded, then

smoothness follows by the exact same argument as that used in the proof of The-

orem 4.6. The first integral is bounded by ‖(ξ̂∞ − ξ)‖2,−1/2‖Φ‖2,−5/2, and the

third, fifth and seventh integrals are bounded since ∇̊ξ̂∞ is compactly supported.

Suppose g ∈ G+
λ , then Lemma 5.2 gives a bound for the second integral:

∫
M
ξ̂0
∞
(̊
gikg̊jl(∇̊k∇̊lgij − ∇̊i∇̊k(gjl)

√
g̊)− Φ0

)
≤ c(λ) ‖ξ̂∞‖∞,0(1 + ‖g − g̊‖2

2,2,−1/2 + ‖π2‖2,−3)

≤ c(λ) ‖ξ̂∞‖∞,0(1 + ‖g − g̊‖2
2,2,−1/2 + ‖π2‖1,2,−3/2).

The fourth and sixth integrals are then bounded similarly:

∫
M
ξ̂i∞(2∇̊jπ

j
i − Φi) ≤ c ‖ξ̂∞‖∞,0(‖Γ̃π‖1,−3 + ‖ε∇̊A‖1,−3 + ‖A∇̊ε‖1,−3)

≤ c ‖ξ̂∞‖∞,0(‖Γ̃‖2,−3/2‖π‖2,−3/2 + ‖ε‖2,−3/2‖∇̊A‖2,−3/2

+ ‖A‖2,−1/2‖∇̊ε‖2,−5/2),

∫
M
ξ̂a∞(4∇̊iE

i
a − Φa) ≤ c‖ξ̂∞‖∞,0‖Akε‖1,−3

≤ c‖ξ̂∞‖∞,0‖Ak‖2,−3/2‖ε‖2,−3/2.

Note that ξ̂ is smooth and bounded, so it follows that ‖ξ̂‖∞,0 is bounded. Since

the regularised Hamiltonian is locally bounded, smoothness follows.

Next we establish the validity of (6.16), by again considering the seven inte-

grals in (6.15) separately. Since ξ̂∞− ξ ∈ W 2,2
−1/2, Theorem (6.2) allows us to write

the first integral as ∫
M

(h, b, p, f) ·DΦ∗[ξ̂∞ − ξ]. (6.17)
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The variation of the second and third terms combine to give

∫
M

{
g̊ik∇̊k(ξ̂

0
∞g̊

jl(∇̊lhij − ∇̊ihjl))
√
g̊ −∇i(ξ̂0

∞(∇jhij −∇i trg h))
√
g

+∇i(hij∇j ξ̂0
∞ − trg h∇iξ̂

0
∞)
√
g − (h, b, p, f) ·DΦ∗[ξ̂0

∞]
}
, (6.18)

where the two middle terms in (6.18) arise from the difference,

(h, b, p, f) ·DΦ∗[ξ̂0
∞]− ξ̂0

∞ ·DΦ[h, b, p, f ]; see (6.12). (6.19)

Note that the third divergence in (6.18) is compactly supported, so it follows that

its integral vanishes. Next consider the second term in (6.18):

∇i(ξ̂0
∞(∇jhij −∇i trg h))

√
g = ∇̊k(g

ikξ̂0
∞g

jl(∇lhij −∇ihjl)(
√
g −

√
g̊))

∇̊k(g
ikξ̂0
∞g

jl(∇lhij −∇ihjl))
√
g̊

= ∇̊k(g
ikξ̂0
∞g

jl(∇lhij −∇ihjl)(
√
g −

√
g̊))

+ ∇̊k

(
(gik − g̊ik)ξ̂0

∞g
jl(∇lhij −∇ihjl)

+ g̊ikξ̂0
∞g

jl(∇lhij −∇ihjl)
)√

g̊.

We now consider the final term in the above expression, which is also the dominant

term:

∇̊k

(̊
gikξ̂0

∞g
jl(∇lhij −∇ihjl)

)
= ∇̊k

(̊
gikξ̂0

∞(gjl − g̊jl)(∇lhij −∇ihjl)

+ g̊ikξ̂0
∞g̊

jl(∇lhij −∇ihjl)
)

∇̊k

(̊
gikξ̂0

∞g̊
jl(∇lhij −∇ihjl)

)
= ∇̊k

(̊
gikg̊jlξ̂0

∞((∇l − ∇̊l)hij − (∇i − ∇̊i)hjl)

g̊ikg̊jlξ̂0
∞(∇̊lhij − ∇̊ihjl)

)
.

Note that the final term in the above expression agrees with the first term in (6.18)

and therefore cancels. Assembling the pieces above allows us to write the first two
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terms of (6.18) as follows:

−
∮
S∞

(
gikξ̂0

∞g
jl(∇lhij −∇ihjl)(

√
g −

√
g̊) + (gik − g̊ik)ξ̂0

∞g
jl(∇lhij −∇ihjl)

√
g̊

+ g̊ikg̊jlξ̂0
∞((∇l − ∇̊l)hij − (∇i − ∇̊i)hjl)

√
g̊
)
dSk. (6.20)

Recalling that g = g̊ + o(r−1/2) is continuous, and employing Proposition 3.8 we

bound the terms in (6.20) as follows:

∮
SR

gikξ̂0
∞g

jl(∇lhij −∇ihjl)(
√
g −

√
g̊)dSk

≤ c‖ξ̂∞‖∞:SR
‖∇h‖1:SR

‖√g −
√
g̊‖∞:SR

≤ ‖ξ̂∞‖∞:SR
(‖∇̊h‖1:SR

+ ‖Γ̃h‖1:SR
)‖√g −

√
g̊‖∞:SR

= R1/2(‖h‖2,2,−1/2 + ‖h‖∞:SR
‖g − g̊‖2,2,−1/2)o(R−1/2)

= o(1),∮
SR

(gik−g̊ik)ξ̂0
∞g

jl(∇lhij −∇ihjl)
√
g̊dSk

≤ c‖ξ̂∞‖∞:SR
‖∇h‖1:SR

‖g − g̊‖∞:SR

= R1/2(‖h‖2,2,−1/2 + ‖h‖∞:SR
‖g − g̊‖2,2,−1/2)o(R−1/2)

= o(1),∮
SR

g̊ikg̊jlξ̂0
∞((∇l − ∇̊l)hij − (∇i − ∇̊i)hjl)

√
g̊dSk

≤ c‖ξ̂∞‖∞:SR
‖Γ̃‖1:SR

‖h‖∞:SR

= o(1).

Since the integrand in (6.20) is clearly W 1,2
loc , Lemma 5.5 ensures that the surface

integral at infinity vanishes. It then follows that (6.18) reduces to

−
∫
M

(h, b, p, f) ·DΦ∗0[ξ̂0
∞], (6.21)

where DΦ∗0 is the formal adjoint of DΦ0; not to be confused with DΦ∗g.
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Similarly, the variation of the fourth and fifth terms in (6.15) are

∫
M

{
2∇̊i(ξ̂

j
∞p

i
j) + 2∇̊j(ξ̂

i
∞π

jkhki)− 2∇i(ξ̂
j
∞p

i
j)− 2∇i(π

kihjkξ̂
j
∞)

−∇i(ε
i
ab
a
j ξ̂
j
∞) +∇i(ξ̂

i
∞ε

j
ab
a
j )−∇i(f

i
aξ̂
j
∞A

a
j ) (6.22)

− (h, b, p, f) ·DΦ∗i [ξ̂
i
∞]
}
,

where all but the first two terms come from (6.12).

Since π, p, ε and f are densities, the divergences above in (6.22) are inde-

pendent of the connection used. It follows that the first four terms cancel exactly.

The remaining divergences are identical to the form of B2 considered earlier, and

therefore vanish by the same argument. The variation of the fourth and fifth terms

in (6.15) then reduce to

−
∫
M

(h, b, p, f) ·DΦi(g, A, π, ε)
∗[ξ̂i∞]. (6.23)

Finally, the variation of the sixth and seventh terms in (6.15) are given by

∫
M
−∇̊i(ξ̂

a
∞f

i
a) +∇i(ξ̂

a
∞f

i
a)− (h, b, p, f) ·DΦ∗a[ξ̂

a
∞]. (6.24)

Since f is a density, the divergences again do not depend on the connection and

therefore the first two terms in (6.24) cancel exactly, leaving

−
∫
M

(h, b, p, f) ·DΦ∗a[ξ̂
a
∞]. (6.25)

Combining (6.21), (6.23) and (6.25) establishes (6.16).

Heuristically, the modified Hamiltonian is a Lagrange function; critical points

of the Hamiltonian should correspond to critical points of ξ∞ · P, subject to the

constraints being satisfied. In light of Theorem 6.3, it is expected that these

critical points correspond to initial data, (g, A, π, ε) ∈ F , with nontrivial solutions
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to DΦ∗[ξ] = 0. While corollary 4.12 states that DΦ∗ has trivial kernel, this is

only when DΦ∗ is considered as an operator on L2
−1/2. If the domain of DΦ∗ is

extended to allow ξ to be nonzero at infinity, then the kernel is no longer trivial;

recall, if DΦ∗(g,A,π,ε)[ξ] = 0 for some ξ 6= 0 then (g, A, π, ε) is a stationary initial

data set. Furthermore, if ξµ∞ is parallel to Pµ, unit speed and future-pointing, then

ξ∞ · P = m + V∞ · Q∞. This motivates Theorem 6.6 below, which is established

by rigorously constructing the aforementioned Lagrange multipliers argument.

For this, we need the following generalisation of the method of Lagrange

multipliers to Banach manifolds (see Theorem 6.3 of [11]).

Theorem 6.4. Suppose K : B1 → B2 is a C1 map between Banach manifolds,

such that DKu : TuB1 → TK(u)B2 is surjective, with closed kernel and closed

complementary subspace for all u ∈ K−1(0). Let f ∈ C1(B1) and fix u ∈ K−1(0),

then the following statements are equivalent:

(i) For all v ∈ kerDKu, we have

Dfu(v) = 0 (6.26)

(ii) There is λ ∈ T ∗K(u)B2 such that for all v ∈ TuB1,

Dfu(v) = 〈λ,DKu(v)〉 , (6.27)

where 〈 , 〉 refers to the natural dual pairing.

The proof of Theorem 6.6 will also require the following lemma, showing that

if ξ ∈ W 2,2
ξ∞

, then f = DΦ∗[ξ] satisfies the hypotheses of Theorem 4.10.

Lemma 6.5. For (g, A, π, ε) ∈ F and ξ ∈ W 2,2
ξ∞

, we have

DΦ∗g[ξ] ∈ L2
−5/2(S2 ⊗ Λ3(M)), DΦ∗A[ξ] ∈ L2

−3/2(TM⊗ g⊗ Λ3(M)),

DΦ∗π[ξ] ∈ W 1,2
−3/2(S2), DΦ∗ε[ξ] ∈ W

1,2
−3/2(T ∗M⊗ g).
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Proof. Recall that ξ̂∞ is smooth, ∇̊ξ̂∞ has compact support and ‖ξ̂∞‖∞,0 is finite.

Since ξ− ξ̂∞ ∈ W 2,2
−1/2, it follows that we have ∇̊ξ ∈ W 1,2

−3/2, and the usual weighted

inequalities give the following estimates:

‖DΦ∗g[ξ]‖2,−5/2 ≤ c
(
‖N‖∞,0(‖π2‖2,−5/2 + ‖E2‖2,−5/2 + ‖B2‖2,−5/2

+ ‖Ric‖2,−5/2) + ‖X‖∞,0‖∇̊π‖2,−5/2 + ‖∇̊2N‖2,−5/2

+ ‖X‖4,−3/2‖ε‖4,−3/2

)
≤ c
(
‖ξ‖∞,0

(
(1 + ‖π‖1,2,−3/2)2 + ‖E‖2

1,2,−3/2 + ‖B‖2
1,2,−3/2

+ ‖Ric‖2,−5/2

)
+ ‖∇̊2N‖2,−5/2 + ‖X‖1,2,−3/2‖ε‖1,2,−3/2

)
,

‖DΦ∗A[ξ]‖2,−3/2 ≤ c
(
‖N‖∞,0(‖∇̊B‖2,−3/2 + ‖Γ̃B‖2,−3/2 + ‖BAk‖2,−3/2)

+ ‖X‖∞,0‖∇̊ε‖2,−3/2 + ‖∇̊N‖4,0‖B‖4,−3/2

+ ‖∇̊X‖4,0‖ε‖4,−3/2 + ‖V ‖∞,0‖ε‖2,−3/2

)
≤ c
(
‖ξ‖∞,0

(
(1 + ‖∇̊g‖4,0 + ‖Ak‖4,0)‖B‖1,2,−3/2

+ ‖ε‖1,2,−3/2

)
+ ‖∇̊ξ‖1,2,0(‖ε‖1,2,−3/2 + ‖B‖1,2,−3/2)

)
≤ c
(
‖ξ‖∞,0

(
(1 + ‖∇̊g‖1,2,−3/2 + ‖Ak‖1,2,−1/2)‖B‖1,2,−3/2

+ ‖ε‖1,2,−3/2

)
+ ‖∇̊ξ‖1,2,0(‖ε‖1,2,−3/2 + ‖B‖1,2,−3/2)

)
,

‖∇̊(DΦ∗π[ξ])‖2,−5/2 ≤ c
(
‖N‖∞,0

(
‖∇̊g‖4,−3/2‖π‖4,−1 + ‖∇̊π‖2,−5/2

)
+ ‖∇̊N‖4,−1‖π‖4,−3/2 + ‖∇̊2X‖2,−5/2

+ ‖∇̊X‖4,−1‖∇̊g‖4,−3/2 + ‖X‖∞,0‖∇̊2g‖2,−5/2

)
≤ c
(
‖ξ‖∞,0

(
‖∇̊g‖1,2,−3/2‖π‖1,2,−3/2 + ‖∇̊π‖2,−5/2

+ ‖∇̊2g‖2,−5/2

)
+ ‖∇̊2X‖2,−5/2

+ ‖∇̊ξ‖1,2,−1

(
‖π‖1,2,−3/2 + ‖∇̊g‖1,2,−3/2

))
.

Note that we must keep track of raising and lowering indices above, as derivatives



Chapter 6. The First Law as a Condition for Stationarity 83

of g are important. We have also made use of the identity δ det(g) = det(g)gijδgij.

Finally, we have

‖∇̊(DΦ∗ε[ξ])‖2,−5/2 ≤ c
(
‖N‖∞,0

(
‖∇̊g‖4,−3/2‖ε‖4,−1 + ‖∇̊ε‖2,−5/2

)
+ ‖∇̊N‖4,−1‖ε‖4,−3/2 + ‖X‖∞,0‖∇̊2A‖2,−5/2

+ ‖∇̊X‖4,−1‖∇̊A‖4,−3/2 + ‖∇̊2X‖2,−2‖A‖∞,−1/2

+ ‖V ‖∞,0‖∇̊2Ak‖2,−5/2 + ‖∇̊V ‖4,0‖∇̊Ak‖4,−5/2

+ ‖∇̊2V ‖2,−1‖Ak‖∞,−3/2

)
≤ c
(
‖ξ‖∞,0

(
‖∇̊g‖4,−3/2‖ε‖4,−1 + ‖∇̊ε‖2,−5/2

+ ‖∇̊2A‖2,−5/2

)
+ ‖∇̊ξ̂∞‖1,2,−1

(
‖ε‖1,2,−3/2

+ ‖∇̊A‖1,2,−3/2

)
+ ‖∇̊2ξ‖2,−2‖A‖2,2,−1/2

)
,

and applying the weighted Poincaré inequality completes the proof.

The main result, equating the validity of the first law with stationary solu-

tions, is a corollary of the following Theorem. We will make use of the shorthand,

G = (g, A, π, ε) ∈ F , to indicate the point that we are linearising about, as this

will be important in proof below.

Theorem 6.6. Take G ∈ F such that Φ(G) = s ∈ L1. Let ξ∞ ∈ R3,1 ⊕ g be fixed

and define the energy functional E ∈ C∞(C(c)) by

Eξ∞(G) = ξ∞ · P(G). (6.28)

The following statements are equivalent:

(i) For all (h, b, p, f) ∈ TGC(s),

DEξ∞
G [h, b, p, f ] = 0. (6.29)
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(ii) There is ξ ∈ W 2,2
ξ∞

(Λ0(M)× TM× g) satisfying

DΦ∗G[ξ] = 0. (6.30)

Proof. First we show (i) ⇒ (ii): that is, assume (i) holds for some fixed s

and G̃ = (g̃, Ã, π̃, ε̃) ∈ F . Fix some ξ̃ ∈ W 2,2
ξ∞

, and define f(G) := H(G; ξ̃) and

K(G) := Φ(G)− s; these maps satisfy the hypotheses of Theorem 6.4. Note that

TGC(s) = ker(DΦG) = ker(DKG) and we have DfG = 16πDEG on TGC(s). It fol-

lows that statement (i) of Theorem 6.6 implies statement (i) of Theorem 6.4, and

therefore there exists λ ∈ N such that for all (h, b, p, f) ∈ TG̃F ,

DfG̃[h, b, p, f ] = 〈λ,DΦG̃[h, b, p, f ]〉

=

∫
M
λ ·DΦG̃[h, b, p, f ].

Now from Theorem 6.3, we have DfG̃[h, b, p, f ] = −
∫
M(h, b, p, f) · DΦ∗

G̃
[ξ]. In

particular, we have

−
∫
M

(h, b, p, f) ·DΦ∗
G̃

[ξ] =

∫
M
λ ·DΦG̃[h, b, p, f ], (6.31)

for all (h, b, p, f) ∈ TG̃F . That is, λ satisfies

DΦ∗
G̃

[λ] = −DΦ∗
G̃

[ξ̃] (6.32)

in the weak sense.

Now by Lemma 6.5, (6.32) satisfies the hypothesis of Theorem 4.10 and

therefore λ ∈ W 2,2
−1/2(Λ0 × TM × g ⊗ Λ0) is a strong solution to (6.32); i.e.,

ξ := λ+ ξ̃ ∈ W 2,2
ξ∞

satisfies

DΦ∗
G̃

[ξ] = 0, (6.33)

strongly. That is, G̃ is a generalised stationary initial data set with generalised

Killing vector, ξ, and we conclude (i)⇒ (ii).
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Conversely, assume DΦ∗G[ξ] = 0 for some ξ ∈ W 2,2
ξ∞

and G ∈ F . For all

(h, b, p, f) ∈ TGC(s), we have

16πDEξ∞
G (ξ)[h, b, p, f ] = DHG(ξ)[h, b, p, f ].

Now from Theorem 6.3 we also have

DHG(ξ)[h, b, p, f ] = −
∫
M

(h, b, p, f) ·DΦ∗G[ξ] = 0

for all (h, b, p, f) ∈ TGF . It follows that

16πDEG(ξ)[h, b, p, f ] = DHG(ξ)[h, b, p, f ] = 0

for all (h, b, p, f) ∈ TGC(s).

A result of Beig and Chruściel [13] states that if a Killing vector, ξµ, is

timelike at infinity, then it is asymptotically proportional to Pµ = ηµνPν , where

η is the Minkowski metric. Recalling that the mass is given by m =
√
−PµPµ,

and rescaling ξ appropriately, we can write m = ξµ∞Pµ. From this, the following

Corollary of Theorem 6.6 is obtained.

Corollary 6.7. Suppose G ∈ C(s), s ∈ L1 and Pµ is a past-pointing timelike

vector in the spacetime, then the following statements are equivalent:

(i) For all (h, b, p, f) ∈ TGC(s),

DmG[h, b, p, f ] + V∞ ·DQG[h, b, p, f ] = 0, (6.34)

where m is the mass, Qa is the Yang-Mills electric charge and V∞ ∈ g.

(ii) G is a generalised stationary initial data set with infinitesimal symmetry, ξ,

in the sense DΦ∗G[ξ] = 0. Furthermore, ξ∞ is proportional to (Pµ,−mV a
∞).
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Proof. Assume (i) holds. Let ξ∞ = − 1
m

(Pµ,−mV a), normalising ξµ∞ to be a

future-pointing unit vector. We have Eξ∞ = ξαPα = m+V a
∞Qa, and condition (i)

implies that DEξ∞
G [h, b, p, f ] = 0 for all (h, b, p, f) ∈ TGC(s). It follows that (ii) is

an immediate consequence of Theorem 6.6.

Conversely, assume condition (ii) holds, then by rescaling if necessary, we

again have ξ∞ = − 1
m

(Pµ,−mV a). From Theorem 6.6 we infer DEξ∞
G [h, b, p, f ] = 0

for all (h, b, p, f) ∈ TGC(s), and therefore (i) holds.

6.3 With an Interior Boundary

In this section, we show that the full first law gives a condition for stationarity

when the Cauchy surface has a closed 2-surface interior boundary. It may then

seem natural, to repeat the analysis of Chapter 4 on a manifold with boundary.

However, the analysis of PDEs on domains with boundary is significantly different

from the case of no boundary, and much of the analysis runs into difficulties.

It may be possible to use weights to control the behaviour of functions as they

approach the interior boundary, however this approach also has difficulties. These

problems are circumvented entirely by considering the same phase space as in the

previous case, but only considering evolution on a single end. Specifically, we will

consider evolution on M0, defined in Chapter 5 (above (5.7)), and let Σ be the

interior boundary surface.

In the preceding section, the variation of the mass and charge arose as a

boundary term at infinity from the difference, (h, b, p, f) ·DΦ∗[ξ]−ξ ·DΦ[h, b, p, f ].

As we are concerned with the evolution on M0, boundary terms are also present

on Σ. It is shown that under suitable boundary conditions for ξ, these extra

boundary terms correspond to the remaining terms in the first law.
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Consider now, the Einstein-Yang-Mills pure constraint Hamiltonian onM0:

Ĥξ
EYM(g, A, π, ε) = −

∫
M0

Φ(g, A, π, ε) · ξ. (6.35)

We first note that this Hamiltonian is a smooth function on the phase space.

Proposition 6.8. The map ĤEYM : F × N ∗ → R is smooth in the sense of

Fréchet differentiability.

Proof. This follows directly from the proof of Proposition 6.1 without modification.

The following proposition, analogous to Theorem 6.2, demonstrates that the

pure constraint Hamiltonian gives the correct equations of motion, when ξ vanishes

at infinity and on the boundary. Recall, we use W̊ k,p
δ to denote the completion of

C∞c with respect to the W k,p
δ norm.

Proposition 6.9. For ξ ∈ W̊ 2,2
−1/2

(
Λ0(M0)× TM0 × g⊗ Λ0(M0)

)
, we have

DĤξ
EYM · (h, b, p, f) = −

∫
M0

DΦ∗[ξ] · (h, b, p, f),

for all (h, b, p, f) ∈ T(g,A,π,ε)F .

Proof. This also follows easily from the previous case. We must show

∫
M0

ξ ·DΦ[h, b, p, f ] =

∫
M0

(h, b, p, f) ·DΦ∗[ξ],

which amounts to proving that the boundary terms arising from the integral of

equation (6.12) vanish. The boundary terms at infinity are exactly those consid-

ered in the previous case so these terms vanish by Theorem 6.2. By hypothesis,

ξ and ∇̊ξ vanish on Σ in the trace sense so the boundary terms arising on Σ also

vanish.



Chapter 6. The First Law as a Condition for Stationarity 88

Proposition 6.9 is equivalent to the statement that this Hamiltonian gives

the correct equations of motion. However, since ξ represents the evolution vector,

Proposition 6.9 pertains only to the evolution of data that is fixed at infinity and

on Σ. Without these boundary conditions, the cumbersome boundary terms from

(6.12) do not vanish in general. However, if (g, A, π, ε) is a stationary, axially

symmetric black hole initial data set that intersects the bifurcation surface of a

bifurcate Killing horizon, then these boundary terms have an interesting geometric

interpretation.

Let ξµ be the stationary Killing vector which is future pointing and unit-

timelike at infinity, and let φ be the axial Killing vector with 2π-periodic orbits,

tangent to the Cauchy surface. Further, suppose that Σ is the bifurcation surface

of the black hole. It is well known that there exists a constant, Ω, such that

ξµ + Ωφ = 0 on Σ; the angular velocity of the black hole. The zeroth law states

that the surface gravity κ is constant on the horizon, and in some sense there is

an analogous Yang-Mills zeroth law. That is, the electric potential is constant on

the horizon under appropriate gauge conditions [7].

The boundary terms at infinity from (6.12) are the same as those in the

preceding section, so we need only examine the terms arising on Σ. Since φ

is tangential to the embedding of M in the full spacetime, the condition on Σ

becomes N = 0 and X = −Ωφ. In particular, X is tangential to Σ, so the

boundary terms reduce to

−
∮

Σ

(
(∇̊j(N)hij − trg h∇̊i(N))

√
g − 2Xjpij + V afai

− 2πki hjkX
j + εiab

a
jX

j + fiaX
jAaj
)
ni. (6.36)

The negative sign outside the integral serves as a reminder that the normal vector

we use is the negative of what appears in the divergence theorem, when applied

to (6.12).
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The surface gravity is given by κ = ni∇̊i(N), which is evaluated on Σ [57],

and since it is constant on a bifurcate Killing horizon, ∇̊N is normal to Σ. Making

use of co-ordinates adapted to Σ, the first two terms in (6.36) can be interpreted

as follows:

−
∮

Σ

(
∇̊j(N)hij − trgh∇̊i(N)

)√
gdSi

= −
∮

Σ

(
gj3∇̊3(N)hijn

i − hkk∇̊3(N)
)√

gdS

=

∮
Σ

∇̊3(N)hAA
√
gdS

= 2κdA, (6.37)

where the index 3 refers to the direction normal to Σ and A = 1, 2 indicates

tangential indices.

The Yang-Mills contribution to the first law comes from the expression,

−
∮

Σ

V afain
i = −V a

Σ

∮
Σ

fain
i = 16πVΣ · dQΣ,

where we have assumed the gauge condition ensuring V ≡ VΣ ∈ g is constant on

the horizon. The remaining terms in (6.36) are proportional to the variation of

the angular momentum:

dJ = dJ̃φ = − 1

16π

∮
Σ

(2φjpij + 2πki hjkφ
j − εiabajφj − fiaφjAaj )ni.

Since that on the horizon we have X = −Ωφ, it is clear that these remaining terms

equal −16πΩ times the variation of angular momentum of Σ.

Recalling that the boundary terms at infinity give the variation of the mass

and the charge at infinity, we find that the combined boundary terms from (6.12)

equal

16π(dm− κ

8π
dA− ΩdJ − VΣ · dQΣ + V∞ · dQ∞). (6.38)
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This suggests that the differential relationship given by the first law (2.18) must

hold, in order for the pure constraint Hamiltonian to give the correct equations of

motion. This has been rigorously established by Ashtekar, Fairhurst and Krishnan,

where the evolution is considered exterior to an isolated horizon [7]. However, we

take a different approach to these boundary terms and the first law plays quite

a different role here. As in the previous section, we redefine the Hamiltonian à

la Regge-Teitelboim by adding boundary terms, making the equations of motion

valid more generally.

Fix ξ̂∞, ξ̂Σ and ξ̂ref , as in the preceding Chapter, with ξ̂iΣ tangent to Σ,

ξ̂aΣ = ξaΣ ∈ g constant, and ξ̂0
Σ = 0. These boundary conditions will be assumed

throughout the remainder of this thesis, unless stated otherwise. Recall the spaces,

Lp
ξ̂ref

(5.20), W k,p

ξ̂ref
(5.21), which we use to enforce the boundary conditions and

asymptotics. For ξ ∈ L2
ξ̂ref

we define the modified Hamiltonian,

Ĥξ
RT (g, A, π, ε) := 16π(ξ∞ · P′ + J̃ξ − ξaΣQΣ a)−

∫
M0

ξ · Φ(g, A, π, ε), (6.39)

where P′ is defined by equations (5.22)-(5.24). As in the previous section, this

Hamiltonian is not well-defined on the entire phase space; both integrals diverge

in general. However, as the surface integrals at infinity are identical to those

considered in the previous section, the dominant terms at infinity still cancel out

and a regularised Hamiltonian is defined everywhere on F . By construction, the

regularised Hamiltonian has almost identical form to (6.15):

Ĥξ(g, A, π, ε) =

∫
M0

(ξ̂ref − ξ) · Φ +

∫
M0

ξ̂0
ref g̊

ikg̊jl(∇̊k∇̊lgij − ∇̊i∇̊k(gjl)
√
g̊ − Φ0)

+

∫
M0

g̊ikg̊jl∇̊kξ̂
0
ref(∇̊lgij − ∇̊igjl)

√
g̊

+

∫
M0

ξ̂iref(2∇̊jπ
j
i + ∇̊j(ε

j
aA

a
i )− Φi) +

∫
M0

(2πji + εjaA
a
i )∇̊j ξ̂

i
ref

+

∫
M0

ξ̂aref(4∇̊iE
i
a − Φa) + 4

∫
M0

Ei
a∇̊iξ̂

a
ref , (6.40)
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which is again defined for each ξ ∈ L2
ξ̂ref

. The additional terms appearing in

this Hamiltonian are momentum terms for the Yang-Mills fields. As they do not

contribute anything at infinity, they were not included in the preceding case (recall

the discussion under the definition of P′i (5.23)).

Proposition 6.10. The regularised Hamiltonian, Ĥ : F × L2
ξ̂ref
→ R, is well-

defined and smooth.

Proof. This is almost identical to the case where the Hamiltonian is defined over

M, rather thanM0. The estimates used in Theorem 6.3, to show that the previous

regularised Hamiltonian was well-defined and smooth, are still valid onM0 as the

weighted Sobolev and Hölder inequalities are valid on a manifold with boundary.

All that remains to be established, is that the additional terms,
∫
M0

ξ̂iref∇̊j(ε
j
aA

a
i )

and
∫
M0

εjaA
a
i ∇̊j ξ̂

i
ref , are locally bounded, and then we conclude that Ĥ is smooth.

The latter term is bounded since ∇̊ξ̂ref is compactly supported, and for the former

we have

‖ξ̂ref∇̊(εA)‖1,−3 ≤ c‖ξ̂ref‖∞,0(‖∇̊ε‖2,−5/2‖A‖2,−1/2 + ‖ε‖2,−3/2‖∇̊A‖2,−3/2).

The new Hamiltonian contains all of the quantities arising in the first law

except for the area term (see 6.39), which is not included since κdA is not the first

variation of any quantity; κ depends explicitly on g, and therefore d(κA) 6= κdA.

This is an obstruction to generating the correct equations of motion from our new

Hamiltonian, which is evident in the following Proposition, analogous to Theorem

6.3.
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Proposition 6.11. For ξ ∈ W 2,2

ξ̂ref
, the variation of the regularised Hamiltonian is

given by

DĤξ[h, b, p, f ] = −
∮

Σ

(∇̊j(ξ0)hij − trgh∇̊i(ξ
0))
√
gdSi

−
∫
M0

DΦ∗[ξ] · (h, b, p, f). (6.41)

Proof. As in the proof of Theorem 6.3, we consider the terms in (6.40) separately.

By Proposition 6.9, the variation of the first integral in (6.40) becomes

∫
M0

(h, b, p, f) ·DΦ∗[ξ̂ref − ξ].

The variation of the second and third terms combine (cf. (6.18)) to give

∫
M0

{
g̊ik∇̊k(ξ̂

0
ref g̊

jl(∇̊lhij − ∇̊ihjl))
√
g̊ −∇i(ξ̂0

ref(∇jhij −∇i trg h))
√
g

+∇i(hij∇j ξ̂0
ref − trg h∇iξ̂

0
ref)
√
g − (h, b, p, f) ·DΦ∗0[ξ̂0

ref ]
}
. (6.42)

Then the first two terms in the above combine to give a total divergence (cf.

(6.20)),

−
∮
M0

∇̊k

(
gikξ̂0

refg
jl(∇lhij −∇ihjl)(

√
g −

√
g̊) + (gik − g̊ik)ξ̂0

refg
jl(∇lhij −∇ihjl)

√
g̊

+ g̊ikg̊jlξ̂0
ref((∇l − ∇̊l)hij − (∇i − ∇̊i)hjl)

√
g̊
)
, (6.43)

which is rewritten as surface integrals, both at infinity and on Σ. The integral at

infinity is identical to that considered in the proof of Theorem 6.3 and therefore

vanishes by the same argument, while the surface integral on Σ vanishes since

ξ0
Σ = 0. The third term in (6.42) is again a divergence, but only gives a boundary

term on Σ since ∇̊ξ̂ref has bounded support. This boundary term on Σ is then

exactly the surface integral in (6.41).
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The variation of the fourth and fifth terms in (6.40) give

∫
M0

{
2∇̊i(ξ̂

j
refp

i
j) + 2∇̊j(ξ̂

i
refπ

jkhki) +∇i(ε
i
ab
a
j ξ̂
j
ref) +∇i(f

i
aξ̂
j
refA

a
j )

− 2∇i(ξ̂
j
refp

i
j)− 2∇i(π

kihjkξ̂
j
ref)−∇i(ε

i
ab
a
j ξ̂
j
ref)−∇i(f

i
aξ̂
j
refA

a
j ) (6.44)

+∇i(ξ̂
i
refε

j
ab
a
j )− (h, b, p, f) ·DΦ∗i [ξ̂

i
ref ]
}
,

which only differs from (6.22) by Yang-Mills angular momentum terms. Since p,

π, f and ε are densities, the divergences above do not depend on the connection

used and thus the first two lines in (6.44) cancel exactly. The remaining divergence

is exactly of the form of B2, used in the proof of Theorem 6.2, and therefore the

surface integral at infinity vanishes by the same argument. Since ξ̂iref is tangent

to Σ, the surface integral on Σ also vanishes, and the variation of the fourth and

fifth terms in (6.40) become

−
∫
M0

(h, b, p, f) ·DΦ∗i [ξ̂
i
ref ]. (6.45)

The final two terms in (6.40) are exactly the same as those considered in Theorem

6.3 and therefore cancel identically, leaving

−
∫
M0

(h, b, p, f) ·DΦ∗a[ξ̂
a
ref ]. (6.46)

Assembling all of the pieces completes the proof.

It is interesting to note here, if both ξ0 and ∇̊ξ0 are set to zero on on Σ,

then the regularised Hamiltonian does indeed give the correct equations of motion.

In particular, if we consider evolution vectors, ξ, that are supported away from

Σ then the evolution is Hamiltonian. However, the fact that the evolution is

not Hamiltonian is tangential to this thesis; we simply use the Hamiltonian as a

Lagrange function.

We are now in a position to prove the main result of this section:
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Theorem 6.12. Let (g, A, π, ε) ∈ C(s), where s ∈ L1, and suppose there exists a

vector field, φ ∈ W 2,2
loc , tangent to Σ with DΦ∗π[φ], DΦ∗ε[φ] ∈ W̊ 1,2

−1/2(M0). Further

suppose that for all (h, b, p, f) ∈ T(g,A,π,ε)C(s),

Dm(g,A,π,ε)[h, b, p, f ] = αDArea(g,A,π,ε)[h, b, p, f ] + βDJφ (g,A,π,ε)[h, b, p, f ]

+ γΣ ·DQΣ (g,A,π,ε)[h, b, p, f ]− γ∞ ·DQ∞ (g,A,π,ε)[h, b, p, f ], (6.47)

where α, β ∈ R and γΣ, γ∞ ∈ g are constants. Then (g, A, π, ε) is a generalised

stationary initial data set. Furthermore, γ is the electric potential, and if Σ is the

bifurcation surface of a bifurcate Killing horizon, then 8πα is the surface gravity

and β is the angular velocity.

Proof. Assume (6.47) holds at some fixed point G̃ = (g̃, Ã, π̃, ε̃) ∈ F . Then fix ξ̂ref

such that it satisfies the following boundary conditions:

• ξµ∞ corresponds to a future pointing unit vector at spatial infinity in the

spacetime that is proportional to Pµ,

• ξ̂aref is constant at infinity and on Σ, with values ξa∞ = γa∞ and ξaΣ = γa∞,

• ξ̂0
ref vanishes on Σ,

• ξ̂iref = −βφi on Σ,

• ∂i(ξ̂0
ref)ñ

i = 16πα on Σ.

We use ñ to denote the unit-normal with respect to g̃, pointing towards infinity

in M0. Note that the condition on ξµ∞ implies ξµ∞Pµ = m, and the conditions

on α, β and γ ensure that they correspond to the appropriate physical quantities

mentioned in the statement of the Theorem.

Now for some ξ ∈ W 2,2

ξ̂ref
, define

f̃(G) := Hξ(G)− 16παArea(Σ), (6.48)
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where G = (g, A, π, ε) ∈ F . We again let K(G) = Φ(G)− s, and note that for all

constrained variations, (h, b, p, f) ∈ ker(DKG̃) = TG̃C(s), we have (see 6.39)

DHξ

G̃
[h, b, p, f ] =16π(ξ∞ ·DP′

G̃
[h, b, p, f ] +DJ̃ξ

G̃
[h, b, p, f ]− ξaΣDQΣ G̃ a[h, b, p, f ])

=16π(DmG̃[h, b, p, f ]− βDJφ G̃[h, b, p, f ]

− γΣ ·DQΣ G̃[h, b, p, f ] + γ∞ ·DQ∞ G̃[h, b, p, f ]).

By hypothesis (6.47), we have Df̃G̃[h, b, p, f ] = 0 for all (h, b, p, f) ∈ ker(DKG̃).

It follows from Theorem 6.4, that there exists λ ∈ N such that

Df̃G̃ = 〈DΦG̃, λ〉 ; (6.49)

that is,

Df̃G̃[h, b, p, f ] =

∫
M
DΦG̃[h, b, p, f ] · λ, (6.50)

for all (h, b, p, f) ∈ TG̃F . However, from Proposition 6.11, we have

Df̃G̃[h, b, p, f ] =−
∮

Σ

(∇̊j(ξ0)hij − trgh∇̊i(ξ
0))
√
gdSi (6.51)

−
∫
M0

DΦ∗[ξ] · (h, b, p, f)− 16παDG̃ Area(Σ)[h, b, p, f ].

As ∂i(ξ
0)ñi = 16πα on Σ, the first and last terms cancel exactly (see (6.37)),

leaving

Df̃G̃[h, b, p, f ] = −
∫
M0

(h, b, p, f) ·DΦ∗G[ξ]; (6.52)

that is,

−
∫
M0

(h, b, p, f) ·DΦ∗G[ξ] =

∫
M
DΦG̃[h, b, p, f ] · λ, (6.53)

for all (h, b, p, f) ∈ T(G̃)F .

Since the first integral in (6.53) is over M0, rather than M, Theorem 4.10

does not directly apply. Instead we extend DΦ∗
G̃

[ξ] by zero, noting that the hy-

potheses on DΦ∗
G̃

[φ] ensure that we can do this without losing regularity.
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Define the function

ψ = (ψ1, ψ2, ψ3, ψ4) :=

−DΦ∗
G̃

[ξ] on M0

0 otherwise
. (6.54)

We then have ∫
M
ψ · (h, b, p, f) =

∫
M
DΦG̃[h, b, p, f ] · λ (6.55)

for all (h, b, p, f) ∈ TG̃F . By Lemma 6.5, we have ψ1 ∈ L2
−5/2(M) and ψ3, ψ4 ∈

W 1,2
−3/2(M) and therefore Theorem 4.10 gives λ ∈ W 2,2

−1/2(M) and DΦ∗
G̃

[λ] = ψ in

the strong sense. It then follows that DΦ∗
G̃

[ξ̃] = 0 on M0, where ξ̃ := ξ + λ is the

generalised stationary Killing vector.

Note that we have DΦ∗
G̃

[λ] = 0 on M\M0, so Theorem 4.11 implies λ = 0

on M\M0. It then follows that ξ̃ = ξ = −βφ on Σ, and in particular we have

that ξ̃ + βφi vanishes on Σ. It is interesting to note that while we do not assume

that Σ is a horizon in the above theorem, the conclusion that ξ̃µ + βφi vanishes

on Σ gives us the following corollary:

Corollary 6.13. If the hypotheses of Theorem 6.12 hold and (g, A, π, ε) is axially

symmetric with axial Killing field, φ, then Σ is the bifurcation surface of a bifurcate

Killing horizon, where 8πα is the surface gravity and β is the angular velocity.

Proof. This is an immediate consequence of the fact that if a Killing field vanishes

on a spacelike 2-surface then that surface is the bifurcation surface of a bifurcate

Killing horizon (see, for example, Chapter 5 of [59]).

Remark 6.14. By virtue of the fact that DΦ∗[ξ] = 0 for a Killing vector, ξ, we do

indeed have DΦ∗π[φ], DΦ∗ε[φ] ∈ W̊ 1,2
−1/2(M0) when φ is the axial Killing vector.
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6.4 Multiple Asymptotic Ends

In Section 6.2, we assumed M had only a single end, however a more general

result holds when M has many asymptotic ends. In this case, the analysis is

identical, however it is discussed separately for the following reasons: in this case,

interpretation of the main result is not obvious, and the case of particular interest,

whenM has a single asymptotic end, is somewhat obfuscated. Note that we only

include a short discussion on this case as it is not of particular interest to the

thesis.

Let M be asymptotically flat with k ends. The constant translation near

infinity, ξ̂∞, may now differ between each asymptotic end. Specifically, let ξ̂∞ be

asymptotic to ξn∞ ∈ R3,1 ⊕ g on the n-th end, in the same sense as the preceding

Sections. Defining Pn(g, A, π, ε) ∈ R3,1 ⊕ g to be energy, momentum and electric

charge of the n-th end, the sum of the volume integrals (5.16)-(5.18), which defined

ξα∞Pα in case (a), gives
∑k

n=1 Pnαξαn∞. In this case, the appropriate energy function

for Theorem 6.6 is Eξ∞ =
∑n

n=1 Pnαξαn∞. The space W 2,2
ξ∞

is replaced with W 2,2
ξN∞

,

of ξ asymptotic to ξn∞ on each respective end. By repeating the arguments of

Section 6.2 with only superficial modifications, one arrives at a slightly revised

version of Theorem 6.6:

Revised Theorem 6.6. Take G ∈ F such that Φ(G) = s ∈ L1. Let ξ∞ ∈ R3,1⊕g

be fixed and define the energy functional E ∈ C∞(C(c)) by

Eξ∞(G) =
n∑

n=1

Pnα(G)ξαn∞. (6.56)

The following statements are equivalent:

(i) For all (h, b, p, f) ∈ TGC(s),

DEξ∞
G [h, b, p, f ] = 0. (6.57)
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(ii) There is ξ ∈ W 2,2
ξN∞

(Λ0(M)× TM× g) satisfying

DΦ∗G[ξ] = 0. (6.58)

The problem with interpreting this result, is that for many choices of the ξns,

neither condition, (i) or (ii), will ever be satisfied. Consider the following example:

let ξn∞ = 0 for all n 6= 1, and ξµ1∞ be a timelike vector. Then Eξ∞ = m1 +V a
1 Q1 a,

where m1, V1 and Q1 are respectively the mass, electric potential and total electric

charge viewed at infinity of a chosen end, M1. From the revised version of Theorem

6.6, we find that solutions where dm1 + V a
1 dQ1 a = 0 are those with symmetries,

ξα, that vanish on every end except M1. That is, ξ is asymptotic to ξn∞ = 0 on

each end, n 6= 1. However, Theorem 4.11 implies that if ξ, satisfying DΦ∗[ξ] = 0,

is asymptotic to zero on a single end, then ξ ≡ 0 on M; that is, for this choice of

the ξns, condition (ii) is never satisfied. It then follows that there is no choice of

initial data satisfying dm1 + V a
1 dQ1 a = 0.

6.5 Concluding Remarks

It has been demonstrated that the first law of black hole mechanics provides a

condition for a solution to the Einstein-Yang-Mills equations to be stationary. In

the case where we consider evolution exterior to a boundary, we do not assume

that the boundary surface is a horizon; we only assume that there is a kind of

symmetry of the metric and 3-potential that is tangent to the surface. We further

conclude that if differential relationship pertaining to the first law is satisfied, for

axially symmetric initial data, then the boundary surface is the bifurcation surface

of a bifurcate Killing horizon.

In establishing these results, a suitable manifold structure for the Einstein-

Yang-Mills phase space has been provided, and we have proven that the space of

solutions to the constraints is a Hilbert submanifold; this is essentially equivalent
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to the property of linearisation stability. We also provide a Regge-Teitelboim

style Hamiltonian that gives the correct equations of motion, provided that the

evolution is considered away from the boundary surface.

We specifically consider the Einstein-Yang-Mills equations here as they gen-

eralise the Einstein-Maxwell equations, which is the framework for the usual first

law of black hole mechanics. However, there are versions of the first law for

other Einstein-matter systems and for modified gravity theories. The arguments

presented here almost certainly extend in a natural way to many of these other

versions of the first law.





Appendix A

Curvature Computations

In this appendix, we explicitly write the Riemann curvature in terms of g

and g̊. This is particularly useful for obtaining the L2
−5/2 curvature estimates used

throughout (Proposition 4.2). In the following, we make use of the Christoffel

symbols associated with both connections, ∇ and ∇̊. We also make use of the

connection difference tensor, Γ̃ = Γ− Γ̊. We first write the Riemann curvature of

g in terms of the Riemann curvature of g̊, and Γ̃:

Ri
jkl =∂kΓ

i
lj − ∂lΓikj + ΓiknΓnlj − ΓilnΓnkj

=R̊i
jkl + ∂kΓ̃

i
lj − ∂lΓ̃ikj + Γ̃iknΓ̃nlj − Γ̃ilnΓ̃nkj

+ Γ̃iknΓ̊nlj + Γ̊iknΓ̃nlj + Γ̃ilnΓ̊nkj + Γ̊ikjΓ̃
n
kj.

The standard technique of fixing a point, p, and choosing coordinates such that

Γ̊ = 0 at p gives us the tensorial equation,

Ri
jkl = R̊i

jkl + ∇̊kΓ̃
i
lj − ∇̊lΓ̃

i
kj + Γ̃iknΓ̃nlj − Γ̃ilnΓ̃nkj, (A.1)

101



Appendix A. Curvature Computations 102

which must be valid for any coordinate system and since p was arbitrary, this must

hold everywhere. We now write this in terms of g:

Ri
jkl =R̊i

jkl +
1

2

[
∇̊k(g

im)(∇̊lgmj + ∇̊jglm − ∇̊mglj)

+ gim(∇̊k∇̊lgmj + ∇̊k∇̊jglm − ∇̊k∇̊mglj)

− ∇̊l(g
im)(∇̊kgmj + ∇̊jgkm − ∇̊mgkj)

+ gim(∇̊l∇̊kgmj + ∇̊l∇̊jgkm − ∇̊l∇̊mgkj)
]

+
1

4
gimgnp(∇̊kgmn + ∇̊ngkm − ∇̊mgkn)(∇̊lgpj + ∇̊jglp − ∇̊pglj)

+
1

4
gimgnp(∇̊lgmn + ∇̊nglm − ∇̊mgln)(∇̊kgpj + ∇̊jgkp − ∇̊pgkj).

We are also interested in the expression for the scalar curvature,

R =R̊ + (gkl − g̊kl)Rkl +
1

2
gjl
[
∇̊k(g

km)(∇̊lgmj + ∇̊jglm − ∇̊mglj)

+ gkm(∇̊k∇̊lgmj + ∇̊k∇̊jglm − ∇̊k∇̊mglj)

− ∇̊l(g
km)(∇̊kgmj + ∇̊jgkm − ∇̊mgkj)

+ gkm(∇̊l∇̊kgmj + ∇̊l∇̊jgkm − ∇̊l∇̊mgkj)
]

+
1

4
gjlgkmgnp(∇̊kgmn + ∇̊ngkm − ∇̊mgkn)(∇̊lgpj + ∇̊jglp − ∇̊pglj)

+
1

4
gjlgkmgnp(∇̊lgmn + ∇̊nglm − ∇̊mgln)(∇̊kgpj + ∇̊jgkp − ∇̊pgkj).

Making use of the symmetry of g, we can collect terms,

R =R̊ + (gkl − g̊kl)Rkl + gkmglj∇̊k∇̊lgmj − gklgmp∇̊k∇̊lgmp (A.2)

+
1

2
gjl
[
∇̊k(g

km)(∇̊lgmj + ∇̊jglm − ∇̊mglj)

− ∇̊l(g
km)(∇̊kgmj + ∇̊jgkm − ∇̊mgkj)

]
+

1

4
gjlgkmgnp(∇̊kgmn + ∇̊ngkm − ∇̊mgkn)(∇̊lgpj + ∇̊jglp − ∇̊pglj)

+
1

4
gjlgkmgnp(∇̊lgmn + ∇̊nglm − ∇̊mgln)(∇̊kgpj + ∇̊jgkp − ∇̊pgkj).
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We have explicitly gathered the second order terms to draw attention to the re-

lationship between the scalar curvature and the ADM mass. In fact, we have the

expression

R = ∇̊k

(̊
gkmg̊lj∇̊lgmj − g̊klg̊mp∇̊lgmp) + o(r−3), (A.3)

where we have included R̊ in the o(r−3) terms. From here, the well-known con-

nection between the scalar curvature and ADM mass is evident. This connection

provides motivation for the Regge-Teitelboim style Hamiltonian modifications in

Chapter 6.





Appendix B

Bootstrapping Argument

Bootstrapping is a very useful technique used in the regularity theory of

PDEs. Essentially, we have an estimate that tells us that a solution to a PDE is a

little more regular than we knew a priori, then we may repeat the estimate with

the new ‘a priori’ regularity to boost the regularity further. In this appendix, we

include the remainder of the bootstrapping argument used in the proof of Theorem

4.10.

The initial estimates obtained are the following:

Γ ∗ F1 ∈ W 2,2
loc , Γ ∗ F2 ∈ W 2,3/2

loc , Γ ∗ F3 ∈ L3−ε
loc ,

Γ ∗ ∂G1 ∈ W 1,2
loc , Γ ∗ ∂G2 ∈ W 1,3/2

loc .
.

From which, we bootstrap up to a W 2,2
loc estimate. All of the estimates in this

Appendix are considered on some coordinate neighbourhood, Ω.

Now, the estimate for Γ ∗F3 gives us the weakest bound on u so we improve

that first. Taking ε = 1/3, we have ξ ∈ L8/3, and repeating the estimates that led

105
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us here gives

‖Γ ∗ F3‖24/5 ≤ c‖Γ ∗ F3‖1,24/13 ≤ c‖∂Γ ∗ F3‖24/13

≤ c‖I1F3‖24/13 ≤ c‖F3‖8/7 ≤ ‖c̃‖2‖ξ‖8/3.

We have improved the regularity to ξ ∈ W
1,3/2
loc ⊂ L3

loc, and now Γ ∗ G2 has

apparently the weakest regularity, so we look at that next. Identical to the original

estimate for Γ ∗ ∂G1, we have

‖Γ∗∂G2‖6 ≤ c‖∂(Γ∗G2)‖1,2 ≤ c‖∂2Γ∗G2‖2 ≤ c‖G2‖2 ≤ c‖b‖6‖ξ‖3 ≤ c‖b‖1,2‖ξ‖3.

Now Γ ∗ F3 again has the weakest regularity, and we have ξ ∈ W 1,24/13
loc ⊂ L

24/5
loc .

Repeating the above estimate we have

‖Γ ∗ F3‖24 ≤ c‖Γ ∗ F3‖1,8/3 ≤ c‖I1F3‖8/3 ≤ c‖F3‖24/7 ≤ ‖c̃‖2‖ξ‖24/5.

This makes Γ ∗ ∂G1,Γ ∗ ∂G2 ∈ W 1,2
loc ⊂ L6

loc the terms with the weakest regularity,

so we revisit their estimates. Since ξ ∈ W 1,2
loc we have

‖∂G1‖2 ≤ c‖ξ‖1,2

‖∂G2‖3/2 ≤ c(‖b∂ξ‖3/2 + ‖ξ∂b‖3/2) ≤ c(‖b‖6‖∂ξ‖2 + ‖ξ‖6‖∂b‖2).

The initial estimates for Γ ∗ F1,Γ ∗ F2 can be applied again to obtain

‖Γ ∗ ∂G1‖2,2 ≤ c‖∂G1‖2,

‖Γ ∗ ∂G2‖2,3/2 ≤ c‖∂G2‖3/2.

At this point we have the following regularity for each of the terms:

Γ ∗ F1 ∈ W 2,2
loc , Γ ∗ F2 ∈ W 2,3/2

loc , Γ ∗ F3 ∈ W 1,8/3
loc ,

Γ ∗ ∂G1 ∈ W 2,2
loc , Γ ∗ ∂G2 ∈ W 2,3/2

loc .
.
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Combined, we have ξ ∈ W 1,8/3
loc ⊂ L24

loc. Another iteration of the Γ ∗ F3 estimate

gives

‖Γ ∗ F3‖∞ ≤ c‖Γ ∗ F3‖1,24/5 ≤ c‖I1F3‖24/5 ≤ c‖F3‖24/13 ≤ ‖c̃‖2‖ξ‖24.

Note that W 2,3/2 is the critical case for the standard Sobolev inequality, so we

have ξ ∈ Lploc for all 1 ≤ p < ∞. We need one more iteration to improve this to

ξ ∈ L∞loc:

‖Γ ∗ F2‖2,2 ≤ c‖F2‖2 ≤ c‖b‖6‖ξ‖3 ≤ c‖b‖1,2‖ξ‖3

‖Γ ∗ ∂G2‖2,5/3 ≤ c‖∂G2‖5/3 ≤ c(‖b‖40/9‖∂ξ‖8/3 + ‖∂b‖2‖ξ‖10).

Finally we have

‖Γ ∗ ∂G2‖2,2 ≤ c‖∂G2‖2 ≤ c(‖b‖6‖∂ξ‖3 + ‖∂b‖2‖ξ‖∞)

‖Γ ∗ F3‖2,2 ≤ c‖F3‖2 ≤ c‖c̃‖2‖ξ‖∞,

and can thus conclude ξ ∈ W 2,2
loc .
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